Scaling Object Recognition: Benchmark of Current State of the Art Techniques

Mohamed Aly¹, Peter Welinder¹, Mario Munich², Pietro Perona¹

(1)California Institute of Technology(2)Evolution Robotics

Motivation

Motivation

Large image collections:

- 20 billions on ImageShack
- I5 billions on Facebook
- 7 billions on Photobucket
- 4 billions on Flickr

[http://www.techcrunch.com April 2009]

Motivation

Individual object recognition: How do current methods scale?

- CPU cycles
- RAM
- Precision / recall

Outline

- Datasets
- Recognition Methods
- Experimental Setup
- Results
- Conclusions

Three flavors:

Item to item

Probe

Scene to item

Model

Probe

Item to scene

Probe

Model

Three flavors:

• Item to item

- Item to scene
- Scene to item

Dataset I: CD Covers Model Set: ~ 132,000 unique images

downloaded from freecovers.net (available on vision.caltech.edu)

Sunday, October 4, 2009

GOLDENETE

Dataset I: CD Covers

Probe sets

500 Synthetic transformations

388 Photographs [Nister 06]

Dataset 2: Pasadena Houses

Model set: ~10⁵ photographs

I 25 pictures of LA houses

10⁵ flickr photographs

Dataset 2: Pasadena Houses

Probe set: 625 pictures of Pasadena houses

Query I

Model

Query 5

Different:

- viewpoint
- time of day
- camera

Dataset 2: Pasadena Houses

Recognition Approaches

Sift/NN/Hough/RANSAC [Lowe '04]

Sift/Quantize/Rank [VideoGoogle '03]

Nearest-Neighbor I:Kd-tree

- Approximate
- Build O(d N)
- Search O(log(N))
- Multiple trees: Kd-forest

N ~ number of prototypes

Nearest-Neighbor 2: LSH

- E²LSH package [Andoni 2004]
- Build O(N)
- Search O(b) ~ O(N)

Method 3: Bag-of-Words

[Sivic et al., Video Goggle '03]

Method 3: Bag-of-Words

- Extract Sift Features
- Quantize using Approximate K-means with Kdforest [Philbin et al. '07]
- Compute word histograms [Dorko-Schmid '03]
- Search O(N)
- Fast search using Inverted File [Sivic et al. '03]

Experimental Setup

Datasets:	Model Set	Probe Set	# images
Scenario 1	Covers	Synthetic	500
Scenario 2	Covers	Photographed	388
Scenario 3	Flickr	Houses	625

- One image/object in Model Set
- Rest in Probe Set
- Increase model set size: 1k, 4k, 8k, 16k, 32k, 64k, 128k images

Results: Recognition

Results: Recognition

Results: Recognition

Conclusions I

- Synthetic distortions are useless
- Performance drops w.r. to n. of features
- LSH scales best
- KD forest scales OK
- Bag-of-words scales poorly

Results: Query Time

(Database: synthetic CD covers)

Conclusions 2

- LHS scales linearly (ouch)
- Bag-of-words scales like sqrt(N)
- KD forests have constant cost O(I)

Conclusions

- Importance of diverse datasets, natural probes
- Recall overall disappointing
- Nowhere close to 10¹⁰ images
- Bag-of-words recall does not scale well
- Kd-trees cost constant w.r. to N, unlike LSH
- Only bag-of-words fits in RAM beyond 10⁵ images

Much work still ahead of us!