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Abstract

We explore using online learning for selecting the best

parameters of Bag of Words systems when searching large

scale image collections. We study two algorithms for no

regret online learning: Hedge algorithm that works in the

full information setting, and Exp3 that works in the bandit

setting. We use these algorithms for parameter selection in

two scenarios: (a) using a training set to obtain weights for

the different parameters, then either choosing the param-

eter setting with maximum weight or combining their re-

sults with weighted majority vote; (b) working fully online

by selecting a parameter combination at every time step.

We demonstrate the usefulness of online learning using ex-

periments on four different real world datasets.

1. Introduction

Searching large scale collections of images has become

an important application of machine vision. There are cur-

rently several smart phone applications that allow the user

to take a photo and search a database of stored images e.g.

Google Goggles1, Snaptell2, and Barnes and Noble3 appli-

cation. These image collections typically include images of

book covers, CD/DVD covers, retail products, and build-

ings and landmark images. The ultimate goal is to identify

the database image containing the object depicted in a probe

image, e.g. an image of a book cover from a different view

point and scale. The correct image can then be presented

to the user, together with some revenue generating informa-

tion, e.g. sponsor ads or referral links.

It has been shown that Bag of Words (BoW) approach

provides acceptable performance with fast run time and low

storage requirements [15, 16, 7, 12, 2, 5, 11]. They have

been used in image retrieval settings [16, 12, 15], near du-

1tinyurl.com/yla655z
2tinyurl.com/582pq9
3tinyurl.com/mstn5b
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Figure 1: Offline vs Online Parameter Selection. In the

offline case, the online algorithm is run with a training set (or user feedback

in a training phase) to obtain fixed weights for the experts (parameters).

Then, given a probe image, the parameter selector uses the outputs of the

experts together with their weights to produce the final result. In the online

case, the parameter selector works online by choosing the output of an

expert given every input probe image. Experts are selected according to

their past performance based on users feedback.

plicate detection [6, 8], and image clustering [2]. However,

one hurdle developers face with this (and other) approaches

is the abundance of different parameters that affect their per-

formance. For BoW, these parameters include the dictio-

nary size, dictionary type, histogram weighting, normaliza-

tion, and distance function. The typical solution to this is to

have a labeled dataset divided into training and test sets to

tune the parameters and quantify their performance.

The motivation of this work is to do away with labeled

datasets in the process of selecting the best parameters and

just rely on the feedback of actual users of the system to

tune these parameters and improve the performance grad-

ually over time. We study how to use two well known al-

gorithms for no-regret online learning, Hedge [9] and Exp3

[3], to tackle this problem. They both assume we are given
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a number of experts, from which we have to choose the out-

put of one given every input pattern. The former works in

the full information setting i.e. you not only know how well

the chosen expert did, but you get to know how well all the

other experts did. The latter works in the so-called bandit

setting i.e. you only get to watch the result of the chosen

expert. The idea of both is to have a weight assigned to

every expert at any point, and choose one at random with

probability proportional to that weight.

We apply these algorithms for parameter selection in two

different scenarios:

1. We use the algorithms in an offline setting to obtain

weights for different parameter settings of the BoW al-

gorithm using the training set. Then we either choose

the output of the maximally weighted expert or com-

bine the experts’ outputs with majority vote. The final

output is evaluated on the test set.

2. We use the algorithms in an online setting, where given

every input probe image, the algorithms have to de-

cide which expert to choose and update their weights

accordingly.

We make the following contributions:

1. We introduce no-regret online learning algorithms to

the computer vision community and propose their use

in the problem of large scale image search.

2. We show the usefulness of these algorithms for param-

eter selection in two settings: offline and online param-

eter selection. In particular, we show that with offline

selection and weighted majority voting, we can outper-

form the single best expert. In addition, in the online

scenario, we can achieve performance within 70-98%

of the best expert.

2. No-regret Online Learning

We assume we have a collection of N experts {en}N
n=1,

each of which can predict the output of any given input.

Input patterns are given sequentially, one at a time. Input

pt is given at time step t, and the algorithm chooses one of

the N experts, ct = 1 . . .N, and output its prediction ect (pt).
Then the algorithm gets to watch the loss of this prediction

lt
ct

and the predictions of all other experts lt
n, n = 1 . . .N,

where lt
n ∈ [0,1]. The goal of the algorithm is to minimize

the loss of the chosen sequence of experts: ∑
T
t=1 lt

ct
. Define

the regret of the sequence of choices made by the algorithm

up to time T as the total loss of this sequence minus the

loss of the single best expert (had we chosen it at every time

step):

RT =
T

∑
t=1

lt
ct
−min

n

T

∑
t=1

lt
n

An algorithm has “no regret” if its regret is upper bounded

by T i.e. RT = o(T ). In that case, the average regret RT /T

Algorithm 1 Hedge(ε)

Initialize w0
n = 1 for all n = 1 . . .N

Loop t = 1 . . .T

1. Set pt
n = wt

n/∑i wt
i

2. Choose expert ct according to distribution pt and out-

put its prediction ect (pt)

3. Update weights wt+1
n = wt

n(1− ε)ltct

Algorithm 2 Exp3(γ)

Initialize w0
n = 1 for all n = 1 . . .N

Loop t = 1 . . .T

1. Set pt
n = (1− γ) wt

n

∑i wt
i
+ γ

N

2. Choose expert ct according to distribution pt and out-

put its prediction ect (pt)
3. Update weights wt+1

n = wt
n exp(γrt

n) where rt
n = δ (ct −

n) γ
N

(

1−lct
pt

n

)

and δ (.) is the Kronecker delta

would decrease to zero as T approaches ∞. Intuitively this

means that the algorithm has no regret if its incurred loss

converges to the loss of the best possible expert available,

so it does not regret making those choices.

We consider two well known no regret online algorithms:

1. Hedge: It works in the full information setting [9], i.e.

we get to watch the loss of all experts at every iter-

ation. It maintains a probability distribution over all

the experts, from which it chooses one at random at

every time t. The weights are then adjusted so that ex-

perts that suffered losses have their weights reduced,

and those with no loss keep their weights unchanged,

see alg. 1. The regret for Hedge is RT = O(
√

T lnN).
2. Exp3: It works in the bandit setting [3] i.e. we only get

to watch the loss of the chosen expert lt
ct

at any time

t. Like Hedge, it maintains a probability distribution

over the experts, from which it chooses one at random

at every iteration. Only the weight of the chosen expert

is adjusted according to its loss, see alg. 2. The regret

for Exp3 is RT = O
(√

T N lnN
)

.

3. Bag of Words (BoW)

BoW originated in text search applications [4] and has

been successfully applied to various computer vision appli-

cations [15, 16, 7, 12, 2, 5, 11]. It is based on extracting lo-

cal features from the images, e.g. SIFT [13], and then clus-

tering them into visual words. Images are then represented

as histogram counts of these visual words. An inverted file

(IF) [18] is typically used for quickly searching through the



stored image histograms. It is a data structure, in which for

every visual word, a list of images that have this word is

maintained, together with the count of that word in the im-

ages. Search is performed very quickly since only images

that have overlapping visual words are considered [18].

BoW has a number of parameters that affect its recogni-

tion performance and run time:

Histogram Weighting:

1. none: use the raw histogram

2. binary: binarize the histogram i.e. just record

whether the image has the visual word or not

3. tf-idf: weight the counts to decrease the influence

of more common words and increase the influence of more

distinctive words [18]

Histogram Normalization:

1. l1: normalize so that they sum to one ∑i |hi| = 1

2. l2: normalize so they have unit length ∑i h2
i = 1

Distance Function:

1. l1: use the sum of absolute differences i.e. dl1(h,g) =

∑i |hi −gi|
2. l2: use the sum of squared differences i.e. dl2(h,g) =

∑
i
(hi −gi)

2

3. cos: use the dot product i.e. dcos(h,g) = 2−∑i higi

Dictionary Type: The two leading methods to compute dic-

tionaries:

1. Approximate K-Means (AKM): which approxi-

mates the nearest neighbor search within K-Means using a

set of randomized Kd-trees [16].

2. Hierarchical K-Means (HKM): which builds a vo-

cabulary tree by applying K-Means recursively [15] at each

node in the tree.

Dictionary Size: It has been shown that having large dic-

tionaries, on the order of tens of thousands of visual words,

significantly increases the performance and search time in

BoW with IF [16, 12].

We consider five different promising combinations of

histogram weighting/normalization/distance:

• {tf-idf, l2, cos}: This is the standard way of computing

nearest neighbors in IF [16, 17].

• {bin, l2, l2}, {bin, l1, l1}: The first was shown to work

well with larger dictionaries in [11].

• {none, l1, l1}, {none, l2, l2}: The former is a novel com-

bination using the l1 distance, the later is equivalent to

the standard one but with raw histograms.

In addition to four combinations of dictionary type/size:

• {AKM-10K, AKM-100K, AKM-1M}: Approximate K-

Means with 10K, 100K, and 1M visual words.

• HKM-1M: HKM with 1M visual words.

Therefore, we consider a total of 20 different parameter

combination for BoW.

(a) Example distractor images.

Each row depicts a different set:

D1, D2, D3, and D4, respectively.

(b) Example probe images. Each

row depicts a different set: P1, P2,

P3, and P4, respectively. Each row

shows a model image (left) with

its probe images (right)

Figure 2: Example Dataset Images. See sec. 4.1.

Probe Sets

total #model #probe

P1 485 97 388

P2 750 125 525

P3 720 80 640

P4 957 233 724

Evaluation Sets

Set Distractor Probe

1 D1 P1

2 D2 P2

3 D3 P3

4 D4 P4

Table 1: Probe Sets Properties and Evaluation Sets

4. Experimental Setup

4.1. Datasets

We have two kinds of datasets:

1. Distractors: images that constitute the bulk of the

database to be searched.

2. Probe: labeled images, two types per object: (a)

Model Image: the ground truth image to be retrieved

for that object, (b) Probe Images: used for query-

ing the database, representing the object in the model

image from different view points, lighting conditions,

scales, ... etc.

Distractor Datasets

• D1: Caltech-Covers A set of ~ 100K images of

CD/DVD covers used in [1].

• D2: Flickr-Buildings A set of ~1M images of build-

ings collected from flickr.com

• D3: Image-net A set of ~400K images of “objects”

collected from image-net.org, specifically images un-

der synsets: instrument, furniture, and tools.

• D4: Flickr-Geo A set of ~1M geo-tagged images col-

lected from flickr.com

Probe Sets

http://flickr.com
http://image-net.org
http://flickr.com


• P1: CD Covers: A set of 5×97=485 images of

CD/DVD covers, used in [1]. The model images come

from freecovers.net while the probe images come from

the dataset used in [15].

• P2: Pasadena Buildings A set of 6×125=750 im-

ages of buildings around Pasadena, CA from [1]. The

model image is image2 (frontal view in the afternoon),

and the probe images are images taken at two different

times of day from different viewpoints.

• P3: ALOI A set of 9×80=640 3D objects images from

the ALOI collection [10] with different illuminations

and view points. We use the first 80 objects, with the

frontal view of each object as the model image, and

four orientations and four illuminations as the probe

images.

• P4: INRIA Holidays a set of 957 images, which

forms a subset of images from [12], with groups of

at least 3 images. There are 233 model images and

724 probe images. The first image in each group is the

model image, and the rest are the probe images.

4.2. Setup

We used four different evaluation sets, where in each we

use a specific distractor/probe set pair. Table 1 lists the eval-

uation sets used. Evaluation was done by choosing 100K

images from the distractor set in addition to all the model

images from the probe set. For every probe image, we get

a ranked list of the images in the distractor + model sets,

where highest ranked images are more likely to be the cor-

responding ground truth model image. Performance is mea-

sured as the percentage of probe images correctly matched

to their ground truth model image i.e. whether the correct

model image is the highest ranked image.

We want to emphasize the difference between the setup

used here and the setup used in other “image retrieval”-like

papers [12, 8, 16]. In our setup, we have only ONE correct

ground truth image to be retrieved and several probe images,

while in the other setting there are a number of images that

are considered correct retrievals. Our setting is like the dual

of image retrieval setting. In fact, in our probe sets, we

invert the role of model and probe images e.g. P1 and P4

above.

We use SIFT [13] feature descriptors with hessian affine

[14] feature detectors. We used the binary available from

tinyurl.com/vgg123. Each evaluation set has its own sets

of dictionaries, which are built using a random subset of

100k images of the corresponding distractor set. The probe

sets were not included in the dictionary generation to avoid

biasing the results. All experiments were performed on ma-

chines with Intel dual Quad-Core Xeon E5420 2.5GHz pro-

cessor and 32GB of RAM. We implemented all the algo-

rithms using Matlab and Mex/C++ scripts.

5. Experiments

Every one of our 20 parameter combinations represents a

different expert, as defined in section 2. For each expert, we

have the results for all probe images, see fig. 3. However,

in the bandit setting we only use the output of the chosen

expert. We use the two online algorithms in two different

scenarios:

1. Offline Parameter Selection: where we divide the

probe set randomly into training and test sets with 60% and

40% of the images respectively. We run the algorithm on

the training set to obtain weights for the different experts.

These weights are then used to combine the results of these

experts using either the output of the highest weighted ex-

pert (see fig. 4) or weighted majority vote (see fig. 5-6) .

The performance is then measured on the test set.

2. Online Parameter Selection: where we run the algo-

rithms fully online on the whole probe set (see fig. 7-8). For

Hedge, we use the information from all the experts, which

in the actual setting would correspond to having the user

rate the results of all the combinations. For Exp3, we use

only the information of the chosen expert, whose results are

presented to the user.

We measure the loss of the experts in two different ways:

1. Binary Loss: where we are only interested whether the

expert returned the ground truth image as the top ranked

result or not. We define lossbin(e, p) = 1 − δ (ge(p)−1)
where p is the probe image, e is the expert, and ge(p) is

the rank of the ground truth image of probe p returned by

expert e.

2. Rank Loss: where we use the rank information of

the ground truth image in the experts results. We define

lossrank(e, p) = ge(p)−1

M
, where M is the maximum rank al-

lowed (M = 100 in our experiments). If ge(p) = 1, this

corresponds to no loss.

6. Results and Conclusions

Fig. 3 shows the recognition performance of the 20 ex-

perts on the test sets for every evaluation set. We note that

AKM-1M dictionary gives the best results, together with

using binary histograms [11] or raw histograms and l1 dis-

tance. We tried five different values {0.001, 0.01, 0.1, 0.25,

0.5} for ε and γ , the parameters of Hedge and Exp3 respec-

tively.

6.1. Offline Parameter Selection

Figures 4-5 show the relative recognition with different

settings for ε and γ . The performance value is divided by

the performance of the single best expert. Fig. 4 shows re-

sults of choosing the expert with maximum weight. Fig. 5

shows results when using the weights to perform weighted

majority vote for the outputs of the experts. We notice, in

http://freecovers.net
http://tinyurl.com/vgg123
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Figure 3: Experts Test Recognition Performance. Columns correspond to different evaluation sets (see table 1). The X-

axis shows the recognition performance on the test set, while the Y-axis shows different experts corrsponding to different

parameter combinations, see sec. 3. Each {weight,normalization,distance} combination has a different color. Text on the left

shows the expert name and its number. Numbers in red are max performance.
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Figure 4: Tuning Settings for Offline Selection with Single Expert. Every column represents a different evaluation set. The

X-axis represents the recognition performance on the test set divided by the max performance, while the Y-axis represents

the different algorithms and loss functions, see sec. 5. Solid lines correspond to binary loss, while dashed lines correspond

to rank loss. Blue corresponds to Hedge, and green represents Exp3. Numbers on the right are the relative performance, and

those in red are the max for each algorithm. Number in parentheses represent the chosen expert with maximum weight, and

the optimal expert is in the x-label (bottom). Expert numbers are in fig. 3.
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Figure 5: Tuning Settings for Offline Selection with Weighted Majority. Every column represents a different evaluation

set. The X-axis represents the recognition performance on the test set divided by the max performance (in parentheses),

while the Y-axis represents the different algorithms and loss functions, see sec. 5. Solid lines correspond to binary loss,

while dashed lines correspond to rank loss. Blue corresponds to Hedge, and green represents Exp3. Numbers on the right are

the relative performance, and those in red are the max for each algorithm. See section 6.1
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Figure 6: Offline Parameter Selection Results. See section 6.1.
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Figure 7: Tuning Settings for Online Selection. Every column represents a different evaluation set. The X-axis represents

the online recognition performance divided by the max performance (in parentheses), while the Y-axis represents the different

algorithms and loss functions , see sec. 5. Solid lines correspond to binary loss, while dashed lines correspond to rank loss.

Blue corresponds to Hedge, and green represents Exp3. Numbers in red are the max for each algorithm. See section 6.2.
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performance divided by the max performance (in parentheses), while the Y-axis represents Hedge(0.5) & Exp3(0.1) with binary loss function.
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(b) Online performance evolution over time. Every column represents a different evaluation set. Y-axis shows the relative performance as a function of the

number of probe images processed T on the X-axis for Hedge(0.5) & Exp3(0.1) with binary loss function.

Figure 8: Online Parameter Selection Results. See section 6.2.



this case, that most of them are comparable, and that us-

ing the rank loss function is generally better than using the

binary loss function.

Figure 6 shows the experimental results for Hedge(0.1)

and Exp3(0.1) (i.e. ε = γ = 0.1) with rank loss function.

Fig. 6a shows recognition performance results on the test

set with weighted majority vote. Fig. 6b plots the weights

assigned to the experts versus their test performance. We

notice the following:

• Using weighted majority vote outperforms choosing

the expert with maximum weight. We usually get per-

formance better than the best single expert, even in the

bandit setting.

• With weighted majority vote, we get excellent perfor-

mances, with the lowest performance at 96% of the

best expert, and the highest performance exceeds the

single best expert with 6%.

• Hedge is better than Exp3 with both weighted voting

and when choosing maximum weighted expert, which

is not surprising since Hedge uses all the information

available.

• Hedge in general produces weights that are correlated

with the test performance of the experts, unlike Exp3,

which produces more evenly spread weights. This ex-

plains why Exp3 only selected the best expert in one

evaluation set, while Hedge succeded in two. How-

ever, with weighted vote they are comparable.

• Using the rank loss function is generally better using

the binary loss function.

6.2. Online Parameter Selection

Figure 7 shows the relative online recognition perfor-

mance with different settings for ε and γ . The performance

value is divided by the performance of the single best ex-

pert on the full probe set. We notice that Hedge(0.5) and

Exp3(0.1) give the best performance, and that using the bi-

nary loss function is generally better than using the rank

loss function.

Figure 8 shows the experimental results for Hedge(0.5)

& Exp3(0.1) with binary loss function. Fig. 8a shows the

online recognition performance on the full probe set (train-

ing + test sets). We plot the recognition performance di-

vided by the performance of the single best combination.

Fig. 8b shows how the relative online performance evolves

over time by processing the probe images one by one. We

note the following:

• Hedge is significantly better than Exp3. The perfor-

mance of Hedge reaches within 94-97% of the single

best performance, while Exp3 reaches 70-90% of that

max. Again this is not surprising since Exp3 only gets

partial information about the experts.

• Hedge(0.5) reaches within 90% of the best in only

around 100 iterations.

• Using the binary loss function yields better results than

using the rank loss function.

In summary, we have shown that no-regret online algo-

rithms are quite useful for parameter selection in large scale

image search. In the offline scenario, we can get perfor-

mance better than the best expert, and in the online scenario

the performance stays within 70-98% of the best.
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