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Abstract

Indexing quickly and accurately in a large collection of

images has become an important problem with many appli-

cations. Given a query image, the goal is to retrieve match-

ing images in the collection. We compare the structure and

properties of seven different methods based on the two lead-

ing approaches: voting from matching of local descriptors

vs. matching histograms of visual words, including some

new methods. We derive theoretical estimates of how the

memory and computational cost scale with the number of

images in the database. We evaluate these properties em-

pirically on four real-world datasets with different statis-

tics. We discuss the pros and cons of the different methods

and suggest promising directions for future research.

1. Introduction

Indexing in a large scale collection of images has become

an important problem of widespread applications. There

are currently several smart phone apps that allow the user

to take a photo and search a database of stored images

e.g. Google Goggles1, Snaptell2, and Barnes and Noble3

app. These image collections typically include images of

book covers, CD/DVD covers, retail products, buildings

and landmarks. Databases vary in size from 105 to 107

images, and they can conceivably reach billions of images.

The ultimate goal is to identify the database image contain-

ing the object depicted in a probe image, e.g. an image of a

book cover from a different view point and scale. The cor-

rect image can then be presented to the user, together with

some revenue generating information, e.g. sponsor ads or

referral links.

This application poses three main challenges: storage,

1http://www.google.com/mobile/goggles/
2http://www.snaptell.com
3http://www.barnesandnoble.com/iphone

computational cost, and recognition performance. For ex-

ample, if we consider 1 billion images, and store 100KB per

image, we need to store 100 TB of data just for the feature

descriptors, and naively searching for the nearest feature in

a database of 1012 features would take 4 minutes on a su-

percomputer with 1 TFLOPS. Given that most applications

involve human-machine interaction, real time indexing is

highly desirable.

In this work we explore how the memory usage, compu-

tational cost, and recognition performance of the two lead-

ing approaches scale with respect to with the number of im-

ages in the database. These two approaches are based on

extracting local features from the images, e.g. SIFT [16]

features, and then indexing these features or some informa-

tion extracted therefrom. This information is then used to

find the best match of a probe image in the database im-

ages. The first approach, the full representation [16] ap-

proach, stores the exact features and uses an efficient data

structure to search the huge number of database features

and identify candidate images; these are further verified for

geometric consistency of the features’ locations. We con-

sider five variants of this approach, each using a different

data structure to perform the fast approximate search in the

features database. The second approach, the bag-of-words

[21, 10, 9, 20, 11, 13, 14] approach, stores only occur-

rence counts of vector quantized features, and uses efficient

search techniques to get candidate image matches. We con-

sider two variants of this approach, the exact inverted file

method [23, 20], and the approximate Min-Hash method

[9].

We make the following contributions:

1. We provide a benchmark of seven different methods

based on the two leading approaches: local feature

matching (full representation) and visual words his-

togram matching (bag of words). We compare recog-

nition rate and matching time as the number of images

increases. We also include in the benchmark three new

1
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Algorithm 1 Basic Algorithm

1. Extract local features {fi j} j from every image i

2. Store some function of these features g(fi j) and build some data

structure d(g) based on g()
3. Given the probe image, extract its local features and compute g(fq j)
4. Search through the data structure d(g) for “nearest neighbors”

5. Every nearest neighbor votes for the database image i it comes from,

accumulating to its score si

6. Sort the database images based on their score si

7. Post-process the sorted list of images to enforce some geometric

consistency and obtain a final list of sorted images s′i. The geometric

consistency check is done using a RANSAC algorithm to fit an affine

transformation between the query image q and the database image i.

methods: using spherical LSH hash functions [22] and

using Hierarchical K-Means [19] for matching local

features.

2. We provide theoretical estimates of the storage re-

quirement and computational cost of these methods as

a function of the database size. We also explore how

these methods are amenable to parallelization.

3. We empirically evaluate these properties on four real

world datasets with different statistics.

4. Based on the benchmark, we suggest promising direc-

tions for future research on efficient image matching in

large databases.

2. Methods Overview

In this work we consider the two leading approaches for

image matching: Full Representation (FR) and Bag-of-

Words representations (BoW). They are based on extract-

ing local features from images e.g. SIFT features [16]. They

can all be seen as representing the same approach with vary-

ing degrees of approximation to improve speed and/or stor-

age requirements. The basic idea is described in Alg. 1.

2.1. Full Representation (FR)

This follows the same general approach outlined in Alg.

1. The specifics are:

1. The function g(fi j) = fi j is the identity function i.e. the

full features are stored

2. The data structure d({fi j}i j) tries to facilitate faster

nearest neighbor look up at the expense of some addi-

tional storage. Four general algorithms are considered

here:

(a) Exhaustive: just use brute force search to get

the nearest neighbor for each query image fea-

ture fq j.

(b) Kd-Tree: a number of randomized Kd-trees [4,

16] are built for the database features {fi j}i j to

allow for logarithmic retrieval time

(c) LSH: a number of locality sensitive hash func-

tions [3, 15] are extracted from the database fea-

tures {fi j}i j, and are arranged in a set of tables.

Each table has a set of hash functions, which are

then concatenated to get the index of the bucket

within the table where the feature should go. All

features with the same hash value go to the same

bucket. Three different hash functions are con-

sidered:

i. L2: this approximates the Euclidean dis-

tance [3], where the hash function is h(x) =
⌊

〈x,r〉+b

w

⌋

where 〈., .〉 is the dot product, r is

a random unit vector, b is a random offset,

and w is the bin width. It projects the feature

onto a random direction and then returns the

bin number where the projection lies.

ii. Spherical-Simplex & Orthoplex: this ap-

proximates distances on the hyper sphere

[22], where the hash function is h(x) =
argmini〈x,yi〉 where yi are the vertices of a

random simplex/orthoplex inscribed in the

unit hyper sphere. The hash value is the in-

dex of the nearest vertex of the simplex.

(d) Hierarchical K-Means: where a hierarchical

decomposition [19] is built from the database

features {fi j}i j. At each level of the tree, K-

means algorithm is performed to obtain a cluster-

ing of the data in the current node, and the pro-

cess is repeated recursively until the maximum

depth allowed is reached [18].

2.2. Bag­of­Words Representation (BoW)

The differences from Alg. 1 are:

1. The function g(fi j) represents a clustering of the in-

put features. For pre-processing, a “dictionary” is built

from the database images by clustering features into

representative “visual words”. Then, each image is

represented by a histogram of occurrences of these vi-

sual words {hi}i, and the original local feature vectors

are thrown away. This is inspired from text search ap-

plications [23].

2. We consider two data structures that try to perform

faster search through the database histograms:

(a) Inverted File: where an inverted file [5, 23]

structure is built from the database images.

(b) Min-Hash: a number of locality sensitive hash

functions [7, 8, 6, 9] are extracted from the

database histograms {hi}i, and are arranged in

a set of tables. The histograms are binarized

(counts are ignored), and each image is repre-

sented as a “set” of visual words {bi}i. The hash



function is defined as h(b) = minπ(b) where π is

a random permutation of the numbers {1, ...,W}
where W is the number of words in the dictionary.

3. Theoretical Scaling Properties

We provide theoretical estimates of how the storage and

computational cost of these methods scale with the num-

ber of images in the database. We present the definitions

of the parameters in Table 1 and summary of the results in

Tables 2a-2b, with details in [1]. We note that these calcu-

lations are based on minimum theoretical storage and aver-

age case scenarios. We also note that we compute distance

between vectors using the dot product, which is equivalent

to euclidean distance since we assume feature vectors are

normalized. We do not consider any compression tech-

nique that might decrease storage (e.g. run-length encod-

ing). Moreover, actual run times of these algorithms will

differ from the average case presented here, for example for

inverted file method or spherical LSH methods, see Fig. 4.

The parallelization considered here is the simplest: for

every method, we determine the minimum number of ma-

chines, M, that can fit the storage required in their main

memory, assuming machines with 50GB of memory. Then

we split the images evenly across these machines and each

will take a copy of the probe image and search its own share

of images. Finally, all the machines will communicate their

ranked list of images (of length L) and produce a final list

of candidate matches that is further geometrically checked.

More sophisticated parallelization techniques are possi-

ble, that can take advantage of the properties of the method

at hand. For example, in the case of Kd-trees, one such ad-

vanced approach is to store the top part of the Kd-tree on

one machine, and divide the bottom subtrees across other

machines, see Fig. 1b. For 1012 features, we have 40 levels

in the Kd-tree, and so we can store up to 30 levels in one

root machine, and split the bottom 10 levels evenly across

the leaf machines. Given a probe image, we first query the

root machine and get the list of branches (and hence sub-

trees) that we need to search with the backtracking. Then

the appropriate leaf machines will process these query fea-

tures and update their ranked list of images. This approach

has the advantage of significant speed up and better utiliza-

tion of the machines at hand, since not all the machines will

be working on the same query feature at the same time,

rather they will be processing different features from the

probe image concurrently, see Fig. 1c. However, it also

has some drawbacks: 1) the geometric verification step is

more complicated as the node machines will not, in gen-

eral, have all the features of any particular image; 2) the

root machine will become a bottleneck for processing input

images, but that can be alleviated by adding more replicas

of the root machine to process more features concurrently;

and 3) building the Kd-tree is tricky, since the building pro-
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(a) Theoretical storage vs. size (left), and run time vs. size (right), assuming

a single machine with infinite memory.

(b) Advanced parallelization scheme for Kd-trees.The

root machine stores the top of the tree, while leaf ma-

chines store the leaves of the tree.
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(c) Time per image vs min. no. of machines required M

for different dataset sizes. Each point represents a dataset

size from 106 to 109 images, going left to right. kd-tree-

adv is the advanced parallelization scheme, see Sec. 3.

Figure 1: Theoretical Scaling Properties. Refer to Tables

1-2

cess needs access to all the features to build a well balanced

tree.

Fig. 1a shows how storage requirements and run-time

scale with the number of images in the database, assuming

one machine with infinite storage and 10 GFLOPS proces-

sor. Fig. 1b shows a schematic of the advanced paralleliza-

tion scheme for Kd-Trees, while Fig. 1c shows the time per

image vs the minimum number of machines M for different

dataset sizes from 106 to 109. We note the following:

• BoW methods take one order of magnitude less storage



Parameter Description Typical Value Parameter Description Typical Value

I no. of images 109 Hl2 # hash fun LSH-L2 50

s bytes/feature dim 1 Blsh # buckets 106

d feature dimension 128 Hsph # funcs for LSH-Spherical 5

F #features/image 1,000 D depth of HKM tree 7

M # machines varies k branching factor of HKM 10

C main memory/machine 50GB W # words for BoW 106

Tkdt # kd-trees 4 Tmh # tables for Min-Hash 50

L length of ranked lists 100 Hmh # hash funs for Min-Hash 1

Bkdt # backtracking 250 Bmh # buckets in Min-Hash 106

Tlsh # lsh tables 4

Table 1: Parameter definitions and typical values, see Sec. 3.

Method Storage (bytes) Ex. (TB) Comp. (FLOP/im) Ex. (GFLOP/im)

Exhaustive (sd +4)IF 132 F2I(2d +1) 256×106

Kd-Tree IF(sd +4+2Tkdt +Tkdt
log2 IF

8
) 160 Bkdt F(2d +1+ log2 FI) 0.074

LSH-L2 IF(sd +4+Tlsh
log2 IF

8
) 152 FTlsh(Hl2(2d +2)+ FI

Blsh
(2d +1)) 1028

LSH-Sim IF(sd +4+Tlsh
log2 IF

8
) 152 FTlsh(Hsph(2d2 +3d)+ FI

Blsh
(2d +1)) 1028

LSH-Orth IF(sd +4+Tlsh
log2 IF

8
) 152 FTlsh(Hsph(2d2 +3d)+ FI

Blsh
(2d +1)) 1028

HKM IF(sd +4)+ kD−1
k−1

ksd 132 FD(2d + k)+ F2 I

kD × (2d +1)) 25.7

Inverted File Wsd +FI(5+
log2 I

8
) 9 FBkdt (2d +1+ log2 W )+F(2+ I) 1

Min-Hash Wsd +FI(4+
log2 W

8
)+Tmh

log2 I

8
7 FBkdt (2d +1+ log2 W )+4FTmhHmh +

TmhI

MBmh
0.07

(a) Theoretical storage requirement (Storage), computational cost on a single machine with infinite memory (Comp.)

Method Parallel (FLOP/im) Ex. (GFLOP/im)

Exhaustive F2 I
M

(2d +1)+L(M−1) 128×103

Kd-Tree FB(2d +1+ log2
FI
M

)+L(M−1) 0.071

Kd-Tree-adv FB log2
C

4Tkdt
+ FB

M
(2dBkdt +Bkdt )+F log2

4FIT
C

+L(min(FB,M)−1) 0.012

LSH-L2 FTlsh(Hl2(2d +2)+ FI
MBlsh

(2d +1))+L(M−1) 85

LSH-Sim FTlsh(Hsph(2d2 +3d)+ FI
MBlsh

(2d +1))+L(M−1) 85

LSH-Orth FTlsh(Hsph(2d2 +3d)+ FI
MBlsh

(2d +1))+L(M−1) 85

HKM FD(2d + k)+ F2 I

MkD × (2d +1)+L(M−1) 0.021

Inverted File FBkdt (2d +1+ log2 W )+F(2+ IF
MW

) 0.075

Min-Hash FBkdt (2d +1+ log2 W )+4FTmhHmh +
TmhI

Bmh
0.07

(b) Theoretical parallel computational cost with minimum required number of machines M. Kd-Tree-adv

is the advanced parallelization scheme, see Fig. 1b.

Table 2: Theoretical Scaling Properties. Refer to Sec. 3, Table 1, and Fig. 1.

than FR methods, due to the fact that we don’t need to

store the feature vectors

• Run-time for Kd-trees and Min-hash grows very

slowly with the database size.

• Inverted file and LSH methods have asymptotically

similar run-time. The theoretical run time increases

linearly with the number of images. However, in prac-

tice, inverted files have much smaller run time than the

average case depicted above.

• The advanced parallelization method provides signifi-

cant speed ups starting at 108 images. It might seem

paradoxical that increasing the dataset size decreases

the run time, however it makes sense when we no-

tice that adding more machines allows us to interleave

processing of more features concurrently, and thus al-

lows faster processing. This however comes at a cost

of more storage, see Fig. 1c.

• We also note that many of the FR methods have pa-

rameters that affect the trade off between run time and

accuracy, e.g. number of hash functions or bin size



for LSH. These parameters have to be tuned for ev-

ery database size under consideration, and we should

not use the same settings when enlarging the database.

This poses a problem for these methods, which have to

be continuously updated, as opposed to Kd-trees which

adapt to the current database size and need very little

tuning.

4. Evaluation Details

4.1. Datasets

Our benchmarks are based on distractor and probe sets
4:

1. Distractors: constitute the bulk of the database to be

searched. In the actual setting, this would include all

the objects of interest e.g. book covers, CD covers, ...

etc.

2. Probe: A set of labeled images used for benchmarking

purposes. This has two types of images per object: (a)

Model Image: represents the ground truth image to

be retrieved for that object, one per object; (b) Probe

Images: images used for querying the database, rep-

resenting the object in the model image from different

view points, lighting conditions, scales, ... etc.

Distractor Datasets

• D1: Caltech-Covers A set of ~ 100K images of

CD/DVD covers used in [2].

• D2: Flickr-Buildings A set of ~1M images of build-

ings collected from flickr.com

• D3: Image-net A set of ~400K images of “objects”

collected from image-net.org, specifically images un-

der synsets: instrument, furniture, and tools.

• D4: Flickr-Geo A set of ~1M geo-tagged images col-

lected from flickr.com

Probe Sets

• P1: CD Covers: A set of 5×97=485 images of

CD/DVD covers. The model images come from

freecovers.net while the probe images come from the

dataset used in [19]. This was also used in [2].

• P2: Pasadena Buildings A set of 6×125=750 im-

ages of buildings around Pasadena, CA from [2]. The

model image is image2 (frontal view in the afternoon),

and the probe images are images taken at two different

times of day from different viewpoints.

• P3: ALOI A set of 9×80=720 3D objects images from

the ALOI collection [12] with different illuminations

and view points. We use the first 80 objects, with the

4at http://vision.caltech.edu/malaa/research/image-search-bench

Figure 2: Example distractor images. Each row depicts a

different set: D1, D2, D3, and D4, respectively, see Sec.

4.1.

Figure 3: Example probe images. Each row depicts a differ-

ent set: P1, P2, P3, and P4, respectively, see Sec. 4.1. Each

row shows two model images (in green border) and 2 or 3

of its probe images (on the right).

frontal view of each object as the model image, and

four orientations and four illuminations as the probe

images.

• P4: INRIA Holidays a set of 957 images, which

forms a subset of images from [13], with groups of

at least 3 images. There are 233 model images and

724 probe images. The first image in each group is the

model image, and the rest are the probe images.

Fig. 2 shows some examples of images from the distractor

sets. Fig. 3 shows some examples of images from the probe

sets. Table 3 summarizes the properties of the probe sets.

4.2. Setup

We used four different testing scenarios, where in each

we use a specific distractor/probe set pair. Table 3 displays

a list of scenarios used. Evaluation was done by increas-

ing the size of the dataset from 100, 1k, 10k, 50k, 100k,

and 400k. For each such size, we include all the model im-

ages to the specified number of distractor images e.g. for

1k images, we have 1,000 images from the distractor set in

addition to all the model images in the probe set.

Performance is measured as the percentage of probe im-

ages correctly matched to their ground truth model image

http://flickr.com
http://image-net.org
http://flickr.com
http://freecovers.net
http://vision.caltech.edu/malaa/research/image-search-bench


Probe Sets

total #model #probe

P1 485 97 388

P2 750 125 525

P3 720 80 640

P4 957 233 724

Evaluation Scenarios

Scenario Distractor Probe

1 D1 D1

2 D2 P2

3 D3 P3

4 D4 P4

Table 3: Probe Sets Properties and Evaluation Scenarios.

See Sec. 4.1 & 4.2.

i.e. whether the correct model image is the first ranked im-

age returned. In addition, we measure performance before

and after the geometric consistency check, which is done

using RANSAC algorithm to fit an affine transformation be-

tween the probe and the model images. Ranking before the

geometric check is based on the number of nearest features

in the image, while ranking after is based on the number of

inliers of the affine transform.

We want to emphasize the difference between the setup

used here and the setup used in other “image retrieval”-like

papers [13, 11, 20]. In our setup, we have only ONE correct

ground truth image to be retrieved and several probe images,

while in the other setting there are a number of images that

are considered correct retrievals. Our setting is motivated by

the application under consideration. The typical application

is searching for a book cover from a database of millions of

book covers. The database contains ONE image per book,

while there are many probe images that strive to retrieve the

same book cover.

We use SIFT [16] feature descriptors with hessian affine

[17] feature detectors. We used the binary available from

tinyurl.com/vgg123. All experiments were performed on

machines with Intel dual Quad-Core Xeon E5420 2.5GHz

processor and 32GB of RAM. We implemented all the al-

gorithms using Matlab and Mex/C++ scripts 5.

5. Results

5.1. Parameter Tuning

All of the methods we compare have different parameters

that affect their run time, storage, and recognition perfor-

mance. We performed parameter tuning in two steps: first

quick tuning to get a set of promising parameters using a

subset of of probe images from scenario 1, and then we ran

experiments using this set of parameters for the four scenar-

ios with sizes from 100 up to 10K images. Based on these

results, we chose the settings that made most sense in terms

of their recognition performance and run time. More de-

tails are in the technical report [1]. Table 4 summarizes the

parameters chosen for the full benchmark. For the inverted

5at http://vision.caltech.edu/malaa/software/research/image-search

Parameters

Kd-Trees T = 1 tree, B =100 backtracking steps

LSH-L2 T =4 tables, H =25 hash functions, bin size w =0.25

LSH-Sim T =4 tables, H =5 hash functions

LSH-Orth T =4 tables, H =5 hash functions

HKM tree depth D = 5, branching factor k = 10

tf-idf weighting, l2 normalization, cos distance

Inverted File raw histograms, l1normalization, l1 distance

binary histograms, l2 normalization, cos distance

Min-Hash T = 100 tables, H = 1 hash function

Table 4: The chosen methods parameters for the full exper-

iments, see Sec. 5.1.

file we built the dictionaries from a random 100K images of

each distractor set using the Approximate K-Means method

(AKM) [20] with 1 million visual words.

5.2. Results and Conclusion

Fig. 4 shows the recognition performance for different

dataset sizes, before and after the geometric consistency

check. We note the following:

• Full representation (FR) methods based on (approx-

imately) matching the local features provide supe-

rior recognition performance to bag-of-words (BoW)

methods.

• BoW methods provide nearly constant search time

compared to linear increase in case of most FR meth-

ods, with the exception of Kd-trees (before exhaust-

ing all the main memory, see the big jump in Fig. 4

for 50K images) which provide logarithmic increase

in search time.

• FR methods take an order of magnitude more memory

than BoW methods e.g. we can easily fit up to 400K

images for BoW while for some scenarios we can only

fit up to 50K images for some FR methods.

• It is important to use diverse datasets for measur-

ing and quantifying performance of different methods.

While the trend is similar for all the four scenarios, we

notice that scenarios 1 and 3 are the easiest, while sce-

narios 2 and 4 provide much more difficulty. We be-

lieve that is the case because images in scenarios 2 and

4 have much more clutter than the other two scenarios,

and that makes the recognition task much harder.

• We notice that BoW techniques can provide acceptable

accuracy in some situations e.g. scenarios 1 & 3. This

suggests that for some applications we can use BoW

methods, which have the advantage of near constant

search time and less storage requirements.

• FR methods pose a trade off between recognition rate

and search time. In particular, for scenarios 2 & 4, we

http://tinyurl.com/vgg123
http://vision.caltech.edu/malaa/software/research/image-search


notice that LSH methods are generally better than Kd-

tree in terms of recognition rate but inferior in terms

of search time which rises sharply with database size.

This suggests that we can trade off extra search time

for better recognition rate.

• Spherical LSH methods provide comparable recogni-

tion rate to LSH-L2 method, but they provide better

search time.

• Using the combination of l1 normalization with l1 dis-

tance in the inverted file method provides better per-

formance than the standard way of using tf-idf weight-

ing with l2 normalization and dot product. Using bi-

nary histograms also outperforms the standard tf-idf

scheme, as reported in [14].

• The geometric verification step is in general not neces-

sary, and gives performance comparable to that before-

hand, except in the case of Min-Hash method. This is

especially true for hard scenarios, e.g. 2 & 4, where

there is a lot of noise features i.e. features belong-

ing to clutter around the object, like trees around the

house. These features get matched to noise features

in the probe image and thus make the geometric step

harder.

• Kd-trees provide the best overall trade off between

recognition performance and computational cost. We

notice that its run time grows very slowly with

the number of images while giving excellent perfor-

mance. Moreover, with more sophisticated paralleliza-

tion schemes (see Sec. 3 & Fig. 1b), we can have sig-

nificant speedup when running on multiple machines,

and the rate of processed images actually increases

with more data, in contrast to BoW. The only draw-

back, which is shared with all FR methods, is the larger

storage requirements.

• We believe the two main promising directions for fur-

ther research in large scale image indexing are:

1. Devising ways to reduce the run time and stor-

age requirements for FR methods. This includes

developing better features that take less storage,

finding ways to store less features in the database,

and compressing information of features using

projection methods (e.g. PCA, etc.).

2. Devising ways to improve the recognition perfor-

mance of BoW methods. This includes finding

better ways to generate the visual words dictio-

naries and encoding geometric information in the

BoW representation.
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Figure 4: Recognition Performance and Time Vs Dataset Size. First two rows show recognition performance before and

after the geometric step. Lower two rows show total processing time per image before and after the geometric step. Every

column represents a different experimental scenario, see Tables 3 and 4.
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