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Acknowledgment
A lot of slides adapted from the slides of Erik Demaine and Charles Leiserson

● Analysis of Algorithms
● Insertion Sort
● Asymptotic Analysis
● Merge Sort
● Recurrences
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Algorithms

Algorithm
A computational procedure that takes some values

as input and produces some values as output

Algorithm
A computational procedure that takes some values

as input and produces some values as output

Algorithm Analysis
Determining the resources required by the 

algorithm as a function of the input size.
 

Resources include space and time.

Algorithm Analysis
Determining the resources required by the 

algorithm as a function of the input size.
 

Resources include space and time.
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Why study algorithms and 
performance?

• Algorithms help us to understand scalability.

• Performance often draws the line between what 
is feasible and what is impossible.

• Algorithmic mathematics provides a language
for talking about program behavior.

• Performance is the currency of computing.

• The lessons of program performance generalize 
to other computing resources. 

• Speed is fun!
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Running time

● Assume:
– Algorithm X takes time 2n2 (written by best programmer) 

running on machine with 1000 MIPS

– Algorithm Y takes time 50n lg n (written by worst 
programmer) running on machine with 10 MIPS

● Running time for 106 numbers 
– Algorithm X takes 2000 seconds

– Algorithm Y takes ~100 seconds 

Complexity makes a huge difference!
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Running time

● Assume:
– Algorithm X takes time 2n2 (written by best programmer) 

running on machine with 1000 MIPS

– Algorithm Y takes time 50n lg n (written by worst 
programmer) running on machine with 10 MIPS 
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The problem of sorting

Input: sequence  〈a1, a2, …, an〉 of numbers.

Output: permutation  〈a'1, a'2, …, a'n〉 such
that  a'1 ≤a'2 ≤… ≤a'n .

Example:

Input: 8  2  4  9  3  6

Output: 2  3  4  6  8  9
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Insertion sort

INSERTION-SORT (A, n) ⊳ A[1 . . n]

for j ← 2 to n
do key ← A[ j]

i ← j – 1
while i > 0 and A[i] > key

do A[i+1] ← A[i]
i ← i – 1

A[i+1] = key

“pseudocode”
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Insertion Sort

void insertion_sort(vector<int>& A) {
  for (int j = 1; j < A.size(); ++j) {
    int key = A[j];
    int i = j – 1; 

 for (; i >= 0 && A[i] > key;) {
      A[i+1] = A[i--]; 
    }
    A[i+1] = key;
  }
}

void insertion_sort(vector<int>& A) {
  for (int j = 1; j < A.size(); ++j) {
    int key = A[j];
    int i = j – 1; 

 for (; i >= 0 && A[i] > key;) {
      A[i+1] = A[i--]; 
    }
    A[i+1] = key;
  }
}



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 10/68
September 7, 2005 Introduction to Algorithms L1.7

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Insertion sort

INSERTION-SORT (A, n) ⊳A[1 . . n]

for j ← 2 to n
do key ← A[ j]

i ← j – 1
while i > 0 and A[i] > key

do A[i+1] ← A[i]
i ← i – 1

A[i+1] = key

“pseudocode”

sorted

i j

key

A:
1 n
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Example of insertion sort

8 2 4 9 3 6
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Example of insertion sort

8 2 4 9 3 6



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 13/68
September 7, 2005 Introduction to Algorithms L1.10

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6
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Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6
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Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6
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Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6
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Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6
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Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6
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Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6
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Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6
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Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done
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Running time

• The running time depends on the input: an 
already sorted sequence is easier to sort.

• Parameterize the running time by the size of 
the input, since short sequences are easier to 
sort than long ones.

• Generally, we seek upper bounds on the 
running time, because everybody likes a 
guarantee.
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Kinds of analyses

Worst-case: (usually)
• T(n) = maximum time of algorithm 

on any input of size n.
Average-case: (sometimes)

• T(n) = expected time of algorithm 
over all inputs of size n.

• Need assumption of statistical 
distribution of inputs.

Best-case: (bogus)
• Cheat with a slow algorithm that 

works fast on some input.
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Machine-independent time

What is insertion sort’s worst-case time?
• It depends on the speed of our computer:

• relative speed (on the same machine),
• absolute speed (on different machines).

BIG IDEA:
• Ignore machine-dependent constants.
• Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis”“Asymptotic Analysis”
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-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3)

Math:
Θ(g(n)) = { f (n) : there exist positive constants c1, c2, and 

n0 such that 0 ≤c1 g(n) ≤f (n) ≤c2 g(n)
for all n ≥n0 }

Engineering:


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Asymptotic performance

n

T(n)

n0

• We shouldn’t ignore 
asymptotically slower 
algorithms, however.

• Real-world design 
situations often call for a 
careful balancing of 
engineering objectives.

• Asymptotic analysis is a 
useful tool to help to 
structure our thinking.

When n gets large enough, a Θ(n2) algorithm 
always beats a Θ(n3) algorithm.
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Insertion Sort Analysis

Sum of all terms
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Insertion Sort Analysis

Best case: sorted array

∑ j=2

n
t j=∑ j=2

n
1=n−1

T (n)=an+b=Θ(n)



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 29/68

Insertion Sort Analysis

Worst case: reversed array

∑ j=2

n
t j=∑ j=2

n
j=

n (n+1)

2
−1

Why? ∑i=1

n
i=

n (n+1)

2
Why?
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Insertion Sort Analysis

∑i=1

n
i=

n (n+1)

2

Review in Appendix A

∑i=1

n
i=1+ 2+ ⋯+ n−1+ n

∑i=1

n
i=n+ n−1+ ⋯ + 2+ 1

2∑i=1

n
i=(n+1)+ (n+1)+ ⋯+ (n+1)+ (n+1)
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Insertion Sort Analysis

Worst case: reversed array

∑ j=2

n
t j=∑ j=2

n
j=

n (n+1)

2
−1

T (n)=a n2
+bn+c=Θ(n2

)
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Insertion Sort Analysis

Average case: all permutations equally likely

∑ j=2

n
t j=∑ j=2

n j
2

T (n)=a n2
+bn+c=Θ(n2

)
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Insertion sort analysis

Worst case: Input reverse sorted.

( )∑
=

Θ=Θ=
n

j

njnT
2

2)()(

Average case: All permutations equally likely.

( )∑
=

Θ=Θ=
n

j

njnT
2

2)2/()(

[arithmetic series]

Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.
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Insertion Sort Analysis

● What about space?
● Insertion sorts “in place” as it does not copy the array 

anywhere
● It only takes a constant amount of extra storage, 

independent of n
● Therefore S(n) = Θ(1)
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Merge Sort

● Divide-and-Conquer
– Divide the problem into a number of sub-problems

– Conquer the smaller problems

– Combine the results of the sub-problems into a solution for 
the big problem
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Merge Sort

● Divide-and-Conquer
– Divide the problem into a number of sub-problems

– Conquer the smaller problems

– Combine the results of the sub-problems into a solution for 
the big problem

void merge_sort(vector<int>& A, int p, int r) {
  if (p >= r) return;

  int q = (p + r) / 2;

  merge_sort(A, p, q);
  merge_sort(A, q+1, r);

  merge(A, p, q, r);
}

void merge_sort(vector<int>& A, int p, int r) {
  if (p >= r) return;

  int q = (p + r) / 2;

  merge_sort(A, p, q);
  merge_sort(A, q+1, r);

  merge(A, p, q, r);
}
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Merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . ⎡n/2⎤ ]

and A[ ⎡n/2⎤+1 . . n ] .
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE
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Merging two sorted arrays

12

11

9

1

20

13

7

2
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Merging two sorted arrays

20

13

7

2

12

11

9

1

1



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 40/68

September 7, 2005 Introduction to Algorithms L1.28
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9
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Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Time = Θ(n) to merge a total 
of n elements (linear time).
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Merge

compute sizes

copy arrays to 
be merged

adds “sentinel”

merge
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Analyzing merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . ⎡n/2⎤ ]

and A[ ⎡n/2⎤+1 . . n ] .
3. “Merge” the 2 sorted lists

T(n)
Θ(1)
2T(n/2)

Θ(n)
Abuse

Sloppiness: Should be T( ⎡n/2⎤ ) + T( ⎣n/2⎦ ) , 
but it turns out not to matter asymptotically.
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Recurrence for Merge Sort

● Next we need to solve this recurrence relation i.e. find 
T(n) as a function of n without T(n/2)
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Recurrence for merge sort

T(n) =
Θ(1) if n = 1;

2T(n/2) + Θ(n) if n > 1.

• We shall usually omit stating the base 
case when T(n) = Θ(1) for sufficiently 
small n, but only when it has no effect on 
the asymptotic solution to the recurrence.

• CLRS and Lecture 2 provide several ways 
to find a good upper bound on T(n).
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n/2) T(n/2)

cn
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

…
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

…
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

…
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

……
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = lg n

cn

cn

cn

#leaves = n Θ(n)

……
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)

…

Total = Θ(n lg n)

…
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Merge Sort Analysis

● What about space?
● Merge Sort does not sort “in place” as it needs 

temporary space for the “Merge” subroutine
● It needs space: S(n) = Θ(n)



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 67/68

Conclusion
● Insertion Sort:

– T(n) = (n2)

– S(n) = (1)
● Merge Sort:

– T(n) = (n lg n)
– S(n) = (n)

● Insertion sort better for smaller n, merge sort for 
larger n
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Recap

● Insertion Sort
● Merge Sort
● Asymptotic Analysis
● Recurrences
● Next: More on recurrences and asymptotic analysis
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