
CMP448: Algorithms

Lecture 01: Algorithm Analysis

Mohamed Alaa El-Dien Aly
Computer Engineering Department

Cairo University
Spring 2013

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 2/68

Agenda

Acknowledgment
A lot of slides adapted from the slides of Erik Demaine and Charles Leiserson

● Analysis of Algorithms
● Insertion Sort
● Asymptotic Analysis
● Merge Sort
● Recurrences

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 3/68

Algorithms

Algorithm
A computational procedure that takes some values

as input and produces some values as output

Algorithm
A computational procedure that takes some values

as input and produces some values as output

Algorithm Analysis
Determining the resources required by the

algorithm as a function of the input size.

Resources include space and time.

Algorithm Analysis
Determining the resources required by the

algorithm as a function of the input size.

Resources include space and time.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 4/68

September 7, 2005 Introduction to Algorithms L1.4
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Why study algorithms and
performance?

• Algorithms help us to understand scalability.

• Performance often draws the line between what
is feasible and what is impossible.

• Algorithmic mathematics provides a language
for talking about program behavior.

• Performance is the currency of computing.

• The lessons of program performance generalize
to other computing resources.

• Speed is fun!

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 5/68

Running time

● Assume:
– Algorithm X takes time 2n2 (written by best programmer)

running on machine with 1000 MIPS

– Algorithm Y takes time 50n lg n (written by worst
programmer) running on machine with 10 MIPS

● Running time for 106 numbers
– Algorithm X takes 2000 seconds

– Algorithm Y takes ~100 seconds

Complexity makes a huge difference!

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 6/68

Running time

● Assume:
– Algorithm X takes time 2n2 (written by best programmer)

running on machine with 1000 MIPS

– Algorithm Y takes time 50n lg n (written by worst
programmer) running on machine with 10 MIPS

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 7/68
September 7, 2005 Introduction to Algorithms L1.5

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

The problem of sorting

Input: sequence 〈a1, a2, …, an〉 of numbers.

Output: permutation 〈a'1, a'2, …, a'n〉 such
that a'1 ≤a'2 ≤… ≤a'n .

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 8/68
September 7, 2005 Introduction to Algorithms L1.6

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Insertion sort

INSERTION-SORT (A, n) ⊳ A[1 . . n]

for j ← 2 to n
do key ← A[j]

i ← j – 1
while i > 0 and A[i] > key

do A[i+1] ← A[i]
i ← i – 1

A[i+1] = key

“pseudocode”

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 9/68

Insertion Sort

void insertion_sort(vector<int>& A) {
 for (int j = 1; j < A.size(); ++j) {
 int key = A[j];
 int i = j – 1;

 for (; i >= 0 && A[i] > key;) {
 A[i+1] = A[i--];
 }
 A[i+1] = key;
 }
}

void insertion_sort(vector<int>& A) {
 for (int j = 1; j < A.size(); ++j) {
 int key = A[j];
 int i = j – 1;

 for (; i >= 0 && A[i] > key;) {
 A[i+1] = A[i--];
 }
 A[i+1] = key;
 }
}

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 10/68
September 7, 2005 Introduction to Algorithms L1.7

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Insertion sort

INSERTION-SORT (A, n) ⊳A[1 . . n]

for j ← 2 to n
do key ← A[j]

i ← j – 1
while i > 0 and A[i] > key

do A[i+1] ← A[i]
i ← i – 1

A[i+1] = key

“pseudocode”

sorted

i j

key

A:
1 n

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 11/68
September 7, 2005 Introduction to Algorithms L1.8

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 12/68
September 7, 2005 Introduction to Algorithms L1.9

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 13/68
September 7, 2005 Introduction to Algorithms L1.10

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 14/68
September 7, 2005 Introduction to Algorithms L1.11

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 15/68
September 7, 2005 Introduction to Algorithms L1.12

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 16/68
September 7, 2005 Introduction to Algorithms L1.13

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 17/68
September 7, 2005 Introduction to Algorithms L1.14

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 18/68
September 7, 2005 Introduction to Algorithms L1.15

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 19/68
September 7, 2005 Introduction to Algorithms L1.16

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 20/68
September 7, 2005 Introduction to Algorithms L1.17

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 21/68
September 7, 2005 Introduction to Algorithms L1.18

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 22/68

September 7, 2005 Introduction to Algorithms L1.19
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Running time

• The running time depends on the input: an
already sorted sequence is easier to sort.

• Parameterize the running time by the size of
the input, since short sequences are easier to
sort than long ones.

• Generally, we seek upper bounds on the
running time, because everybody likes a
guarantee.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 23/68

September 7, 2005 Introduction to Algorithms L1.20
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Kinds of analyses

Worst-case: (usually)
• T(n) = maximum time of algorithm

on any input of size n.
Average-case: (sometimes)

• T(n) = expected time of algorithm
over all inputs of size n.

• Need assumption of statistical
distribution of inputs.

Best-case: (bogus)
• Cheat with a slow algorithm that

works fast on some input.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 24/68

September 7, 2005 Introduction to Algorithms L1.21
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Machine-independent time

What is insertion sort’s worst-case time?
• It depends on the speed of our computer:

• relative speed (on the same machine),
• absolute speed (on different machines).

BIG IDEA:
• Ignore machine-dependent constants.
• Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis”“Asymptotic Analysis”

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 25/68

September 7, 2005 Introduction to Algorithms L1.22
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3)

Math:
Θ(g(n)) = { f (n) : there exist positive constants c1, c2, and

n0 such that 0 ≤c1 g(n) ≤f (n) ≤c2 g(n)
for all n ≥n0 }

Engineering:



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 26/68

September 7, 2005 Introduction to Algorithms L1.23
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Asymptotic performance

n

T(n)

n0

• We shouldn’t ignore
asymptotically slower
algorithms, however.

• Real-world design
situations often call for a
careful balancing of
engineering objectives.

• Asymptotic analysis is a
useful tool to help to
structure our thinking.

When n gets large enough, a Θ(n2) algorithm
always beats a Θ(n3) algorithm.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 27/68

Insertion Sort Analysis

Sum of all terms

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 28/68

Insertion Sort Analysis

Best case: sorted array

∑ j=2

n
t j=∑ j=2

n
1=n−1

T (n)=an+b=Θ(n)

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 29/68

Insertion Sort Analysis

Worst case: reversed array

∑ j=2

n
t j=∑ j=2

n
j=

n (n+1)

2
−1

Why? ∑i=1

n
i=

n (n+1)

2
Why?

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 30/68

Insertion Sort Analysis

∑i=1

n
i=

n (n+1)

2

Review in Appendix A

∑i=1

n
i=1+ 2+ ⋯+ n−1+ n

∑i=1

n
i=n+ n−1+ ⋯ + 2+ 1

2∑i=1

n
i=(n+1)+ (n+1)+ ⋯+ (n+1)+ (n+1)

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 31/68

Insertion Sort Analysis

Worst case: reversed array

∑ j=2

n
t j=∑ j=2

n
j=

n (n+1)

2
−1

T (n)=a n2
+bn+c=Θ(n2

)

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 32/68

Insertion Sort Analysis

Average case: all permutations equally likely

∑ j=2

n
t j=∑ j=2

n j
2

T (n)=a n2
+bn+c=Θ(n2

)

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 33/68

September 7, 2005 Introduction to Algorithms L1.24
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Insertion sort analysis

Worst case: Input reverse sorted.

()∑
=

Θ=Θ=
n

j

njnT
2

2)()(

Average case: All permutations equally likely.

()∑
=

Θ=Θ=
n

j

njnT
2

2)2/()(

[arithmetic series]

Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 34/68

Insertion Sort Analysis

● What about space?
● Insertion sorts “in place” as it does not copy the array

anywhere
● It only takes a constant amount of extra storage,

independent of n
● Therefore S(n) = Θ(1)

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 35/68

Merge Sort

● Divide-and-Conquer
– Divide the problem into a number of sub-problems

– Conquer the smaller problems

– Combine the results of the sub-problems into a solution for
the big problem

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 36/68

Merge Sort

● Divide-and-Conquer
– Divide the problem into a number of sub-problems

– Conquer the smaller problems

– Combine the results of the sub-problems into a solution for
the big problem

void merge_sort(vector<int>& A, int p, int r) {
 if (p >= r) return;

 int q = (p + r) / 2;

 merge_sort(A, p, q);
 merge_sort(A, q+1, r);

 merge(A, p, q, r);
}

void merge_sort(vector<int>& A, int p, int r) {
 if (p >= r) return;

 int q = (p + r) / 2;

 merge_sort(A, p, q);
 merge_sort(A, q+1, r);

 merge(A, p, q, r);
}

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 37/68

September 7, 2005 Introduction to Algorithms L1.25
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . . ⎡n/2⎤]

and A[⎡n/2⎤+1 . . n] .
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 38/68

September 7, 2005 Introduction to Algorithms L1.26
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

12

11

9

1

20

13

7

2

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 39/68

September 7, 2005 Introduction to Algorithms L1.27
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 40/68

September 7, 2005 Introduction to Algorithms L1.28
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 41/68

September 7, 2005 Introduction to Algorithms L1.29
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 42/68

September 7, 2005 Introduction to Algorithms L1.30
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 43/68

September 7, 2005 Introduction to Algorithms L1.31
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 44/68

September 7, 2005 Introduction to Algorithms L1.32
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 45/68

September 7, 2005 Introduction to Algorithms L1.33
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 46/68

September 7, 2005 Introduction to Algorithms L1.34
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 47/68

September 7, 2005 Introduction to Algorithms L1.35
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 48/68

September 7, 2005 Introduction to Algorithms L1.36
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

1220

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 49/68

September 7, 2005 Introduction to Algorithms L1.37
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 50/68

September 7, 2005 Introduction to Algorithms L1.38
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time = Θ(n) to merge a total
of n elements (linear time).

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 51/68

Merge

compute sizes

copy arrays to
be merged

adds “sentinel”

merge

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 52/68

September 7, 2005 Introduction to Algorithms L1.39
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Analyzing merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . . ⎡n/2⎤]

and A[⎡n/2⎤+1 . . n] .
3. “Merge” the 2 sorted lists

T(n)
Θ(1)
2T(n/2)

Θ(n)
Abuse

Sloppiness: Should be T(⎡n/2⎤) + T(⎣n/2⎦) ,
but it turns out not to matter asymptotically.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 53/68

Recurrence for Merge Sort

● Next we need to solve this recurrence relation i.e. find
T(n) as a function of n without T(n/2)

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 54/68

September 7, 2005 Introduction to Algorithms L1.40
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recurrence for merge sort

T(n) =
Θ(1) if n = 1;

2T(n/2) + Θ(n) if n > 1.

• We shall usually omit stating the base
case when T(n) = Θ(1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.

• CLRS and Lecture 2 provide several ways
to find a good upper bound on T(n).

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 55/68

September 7, 2005 Introduction to Algorithms L1.41
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 56/68

September 7, 2005 Introduction to Algorithms L1.42
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 57/68

September 7, 2005 Introduction to Algorithms L1.43
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n/2) T(n/2)

cn

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 58/68

September 7, 2005 Introduction to Algorithms L1.44
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 59/68

September 7, 2005 Introduction to Algorithms L1.45
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 60/68

September 7, 2005 Introduction to Algorithms L1.46
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

…

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 61/68

September 7, 2005 Introduction to Algorithms L1.47
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

…

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 62/68

September 7, 2005 Introduction to Algorithms L1.48
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

…

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 63/68

September 7, 2005 Introduction to Algorithms L1.49
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

……

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 64/68

September 7, 2005 Introduction to Algorithms L1.50
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = lg n

cn

cn

cn

#leaves = n Θ(n)

……

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 65/68

September 7, 2005 Introduction to Algorithms L1.51
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)

…

Total = Θ(n lg n)

…

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 66/68

Merge Sort Analysis

● What about space?
● Merge Sort does not sort “in place” as it needs

temporary space for the “Merge” subroutine
● It needs space: S(n) = Θ(n)

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 67/68

Conclusion
● Insertion Sort:

– T(n) = (n2)

– S(n) = (1)
● Merge Sort:

– T(n) = (n lg n)
– S(n) = (n)

● Insertion sort better for smaller n, merge sort for
larger n

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 68/68

Recap

● Insertion Sort
● Merge Sort
● Asymptotic Analysis
● Recurrences
● Next: More on recurrences and asymptotic analysis

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

