## **CMP448: Algorithms**



### Lecture 07: Binary Search Trees

Mohamed Alaa El-Dien Aly Computer Engineering Department Cairo University Spring 2013

# Agenda

- Binary Search Trees
  - Insert, Search, Delete
  - Expected Height
- Red Black Trees

Acknowledgment

A lot of slides adapted from the slides of Erik Demaine, Piotr Indyk, and Charles Leiserson

Mohamed Aly – CMP448 Spring 2013

# **Dictionary Data Structure**

- Data structures that support
  - Insert(data, key)
  - Delete(data, key)
  - Search(data, key)
- Last lecture
  - Hash tables
  - Operations in expected constant time
- This lecture
  - Binary Trees
  - Operations in expected log time



## **Binary Search Tree**

- Each node x has:
  - -key[x]
  - Pointers:
    - left[x]
    - right[x]
    - parent[x]



© Piotr Indyk

Introduction to Algorithms

October 6, 2004 L7.3

Mohamed Aly – CMP448 Spring 2013



# **Binary Search Tree (BST)**

#### **BST** Property

- Property: for any node x:
  - For all nodes y in the left subtree of x:

 $key[y] \leq key[x]$ 

For all nodes y in the right subtree of x:

 $key[y] \ge key[x]$ 



© Piotr Indyk

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013



# **Binary Search Tree (BST)**

#### **BST** Property

- Property: for any node x:
  - For all nodes y in the left subtree of x:

 $key[y] \leq key[x]$ 

For all nodes y in the right subtree of x:

 $key[y] \ge key[x]$ 

• Given a set of keys, is BST for those keys unique?



Introduction to Algorithms

h

Mohamed Aly – CMP448 Spring 2013



## No uniqueness





© Piotr Indyk

Introduction to Algorithms

October 6, 2004 L7.5

Mohamed Aly – CMP448 Spring 2013



## What can we do given BST ?

- Sort !
- Inorder-Walk(x):



© Piotr Indyk

Introduction to Algorithms

October 6, 2004 L7.6

Mohamed Aly – CMP448 Spring 2013



# What can we do given BST ?

- Sort !
- Inorder-Walk(x):
  - If x≠NIL then
    - Inorder-Walk( left[x] )
    - print key[x]
    - Inorder-Walk( right[x] )
- Output: 1 5 6 7 8 9 12

© Piotr Indyk

Introduction to Algorithms

8

Mohamed Aly – CMP448 Spring 2013



• What is the running time of Inorder-Walk?



© Piotr Indyk

Introduction to Algorithms

October 6, 2004 L7.7

Mohamed Aly – CMP448 Spring 2013



- What is the running time of Inorder-Walk?
- It is **O**(n)
- Because:
  - Each link is traversed twice
  - There are O(n) links



© Piotr Indyk

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013



• Does it mean that we can sort n keys in O(n) time ?



© Piotr Indyk

Introduction to Algorithms

October 6, 2004 L7.8

Mohamed Aly – CMP448 Spring 2013



- Does it mean that we can sort n keys in O(n) time ?
- No
- It just means that building a BST takes Ω(n log n) time (in the comparison model)



© Piotr Indyk

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013



## **BST** as a data structure

- Operations:
  - -Insert(x)
  - -Delete(x)
- $\rightarrow$  -Search(k)

© Piotr Indyk

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013



## Search

Search(x):

- If x≠NIL then
  - If key[x] = k then return x
  - If k < key[x] then return
    Search( left[x] )</pre>
  - If k > key[x] then return
    Search( right[x] )
- Else return NIL



© Piotr Indyk

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013



## Search

Search(x):

- If x≠NIL then
  - If key[x] = k then return x
  - If k < key[x] then return
    Search( left[x] )</pre>
  - If k > key[x] then return
    Search( right[x] )
- Else return NIL



© Piotr Indyk

Introduction to Algorithms

October 6, 2004 L7.10

Mohamed Aly – CMP448 Spring 2013



## Search

Search(x):

- If x≠NIL then
  - If key[x] = k then return x
  - If k < key[x] then return
    Search( left[x] )</pre>
  - If k > key[x] then return
    Search( right[x] )
- Else return NIL



© Piotr Indyk

Introduction to Algorithms

October 6, 2004 L7.10

Mohamed Aly – CMP448 Spring 2013



# **Predecessor/Successor**

- Can modify Search (into Search') such that, if k is not stored in BST, we get x such that:
  - Either it has the largest key[x]<k, or
  - It has the smallest key[x] > k
- Useful when k prone to errors
- What if we always want a successor of k?
  - x=Search'(k)
  - If key[x]<k, then return Successor(x)</p>
  - Else return x

© Piotr Indyk

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013



Successor(x):

- If right[x] ≠ NIL then return Minimum( right[x] )
- Otherwise
  - $-y \leftarrow p[x]$
  - While y≠NIL and x=right[y] do

    - $y \leftarrow p[y]$
  - Return y

#### The lowest ancestor that has x in the left subtree

© Piotr Indyk

Introduction to Algorithms

October 6, 2004 L7.12

y

Х

h

Mohamed Aly – CMP448 Spring 2013



Successor(x):

- If right[x] ≠ NIL then return Minimum( right[x] )
- Otherwise
  - $-y \leftarrow p[x]$
  - While y≠NIL and x=right[y] do

    - $y \leftarrow p[y]$
  - Return y

© Piotr Indyk

Introduction to Algorithms

y

Х

6

Mohamed Aly – CMP448 Spring 2013



Successor(x):

- If right[x] ≠ NIL then return Minimum( right[x] )
- Otherwise
  - $-y \leftarrow p[x]$
  - While y≠NIL and x=right[y] do

    - $y \leftarrow p[y]$
  - Return y

© Piotr Indyk

Introduction to Algorithms

V

h

Х

Mohamed Aly – CMP448 Spring 2013



Successor(x):

- If right[x] ≠ NIL then return Minimum( right[x] )
- Otherwise
  - $-y \leftarrow p[x]$
  - While y≠NIL and x=right[y] do
    - $x \leftarrow y$
    - $y \leftarrow p[y]$
  - Return y

© Piotr Indyk

Introduction to Algorithms

y

Х

h

Mohamed Aly – CMP448 Spring 2013



### Minimum

### Minimum(x) • While left[x] $\neq$ NIL do $-x \leftarrow left[x]$

• Return x



© Piotr Indyk

Introduction to Algorithms

October 6, 2004 L7.13

Mohamed Aly – CMP448 Spring 2013



# **Nearest Neighbor**

- Assuming keys are numbers
- For a key k, can we find x such that |k-key[x]| is minimal?
- Yes:
  - $\frac{key[x]}{successor}$  must be either a predecessor or successor of k
  - -y=Search'(k) //y is either succ or pred of k
  - y' =Successor(y)
  - y''=Predecessor(y)
  - Report the closest of key[y], key[y'], key[y'']

© Piotr Indyk

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013



- How much time does all of this take ?
- Worst case: O(height)
- Height really important
- Tree better be balanced





© Piotr Indyk

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013



# **Constructing BST**

Insert(z):

- $y \leftarrow NIL$
- $x \leftarrow root$
- While  $x \neq NIL$  do
  - $y \leftarrow x$
  - If key[z] < key[x] then  $x \leftarrow left[x]$ else  $x \leftarrow right[x]$
- $p[z] \leftarrow y$
- If key[z] < key[y] then left[y] ← z else right[y] ← z

© Piotr Indyk

Introduction to Algorithms







- After we insert n elements, what is the worst possible BST height ?
- Pretty bad: n-1



© Piotr Indyk

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013



## Average case analysis

- Consider keys 1,2,...,n, in a random order
- Each permutation equally likely
- For each key perform Insert
- What is the likely height of the tree ?

© Piotr Indyk

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013



## Average case analysis

- Consider keys 1,2,...,n, in a random order
- Each permutation equally likely
- For each key perform Insert
- What is the likely height of the tree ?
- It is O(log n)

© Piotr Indyk

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013







Introduction to Algorithms

October 6, 2004 L7.19

Mohamed Aly – CMP448 Spring 2013







Introduction to Algorithms

October 6, 2004 L7.19

Mohamed Aly – CMP448 Spring 2013







Mohamed Aly – CMP448 Spring 2013

Introduction to Algorithms

October 6, 2004 L7.19







Mohamed Aly – CMP448 Spring 2013

Introduction to Algorithms

October 6, 2004 L7.19







Introduction to Algorithms

October 6, 2004 L7.19

Mohamed Aly – CMP448 Spring 2013







October 6, 2004 L7.19

Mohamed Aly – CMP448 Spring 2013

## **Random BST**

- Expected height?
  - $O(\lg n)$
- Proof in the book!
- What if we want height to be  $O(\lg n)$  in the worst case?
  - Red-Black Trees



# **Balanced search trees**

**Balanced search tree:** A search-tree data structure for which a height of  $O(\lg n)$  is guaranteed when implementing a dynamic set of *n* items.

- AVL trees
- 2-3 trees

**Examples:** 

- 2-3-4 trees
- B-trees
- Red-black trees

October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.2

Mohamed Aly – CMP448 Spring 2013



# **Red-black trees**

This data structure requires an extra onebit color field in each node.

### **Red-black properties:**

- 1. Every node is either red or black.
- 2. The root and leaves (NIL's) are black.
- 3. If a node is red, then its parent is black.
- 4. All simple paths from any node x to a descendant leaf have the same number of black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

Mohamed Aly – CMP448 Spring 2013



October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

Mohamed Aly – CMP448 Spring 2013



### 1. Every node is either red or black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Mohamed Aly – CMP448 Spring 2013

**Computer Engineering, Cairo University** 



### 2. The root and leaves (NIL's) are black.

October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Mohamed Aly – CMP448 Spring 2013

**Computer Engineering, Cairo University** 



### 3. If a node is red, then its parent is black.

October 19, 2005

Copyright @ 2001-5 by Erik D. Demaine and Charles E. Leiserson

Mohamed Aly – CMP448 Spring 2013

**Computer Engineering, Cairo University** 



Mohamed Aly – CMP448 Spring 2013



**Theorem.** A red-black tree with n keys has height  $h \le 2 \lg(n+1)$ .

*Proof.* (The book uses induction. Read carefully.)

### **INTUITION:**

• Merge red nodes into their black parents.



October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

Mohamed Aly – CMP448 Spring 2013



**Theorem.** A red-black tree with n keys has height  $h \le 2 \lg(n+1)$ .

*Proof.* (The book uses induction. Read carefully.)

### **INTUITION:**

• Merge red nodes into their black parents.



October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

Mohamed Aly – CMP448 Spring 2013



**Theorem.** A red-black tree with n keys has height  $h \le 2 \lg(n+1)$ .

*Proof.* (The book uses induction. Read carefully.)

### **INTUITION:**

• Merge red nodes into their black parents.



October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

Mohamed Aly – CMP448 Spring 2013



**Theorem.** A red-black tree with n keys has height  $h \le 2 \lg(n+1)$ .

*Proof.* (The book uses induction. Read carefully.)

### **INTUITION:**

• Merge red nodes into their black parents.



October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

Mohamed Aly – CMP448 Spring 2013



**Theorem.** A red-black tree with n keys has height  $h \le 2 \lg(n+1)$ .

*Proof.* (The book uses induction. Read carefully.)

### **INTUITION:**

• Merge red nodes into their black parents.



October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

Mohamed Aly – CMP448 Spring 2013



**Theorem.** A red-black tree with n keys has height  $h \le 2 \lg(n+1)$ .

*Proof.* (The book uses induction. Read carefully.)

### **INTUITION:**

• Merge red nodes into their black parents.



- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth h' of leaves.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

Mohamed Aly – CMP448 Spring 2013



# **Proof (continued)**

• We have  $h' \ge h/2$ , since at most half the leaves on any path are red.



October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

Mohamed Aly – CMP448 Spring 2013



# **Proof (continued)**

- We have  $h' \ge h/2$ , since at most half the leaves on any path are red.
- The number of leaves in a RBT is n + 1 (every node inserted adds two children and removes one except the root) which is at least 2<sup>h</sup> if we assume only 2 children



October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

Mohamed Aly – CMP448 Spring 2013



# **Proof (continued)**

- We have  $h' \ge h/2$ , since at most half the leaves on any path are red.
- The number of leaves in a RBT is n + 1
  - $\Rightarrow n + 1 \ge 2^{h'}$  $\Rightarrow \lg(n + 1) \ge h' \ge h/2$  $\Rightarrow h \le 2 \lg(n + 1).$



October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Mohamed Aly – CMP448 Spring 2013

**Computer Engineering, Cairo University** 



# **Query operations**

**Corollary.** The queries SEARCH, MIN, MAX, SUCCESSOR, and PREDECESSOR all run in  $O(\lg n)$  time on a red-black tree with *n* nodes.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

Mohamed Aly – CMP448 Spring 2013



# **Modifying operations**

The operations INSERT and DELETE cause modifications to the red-black tree:

- the operation itself,
- color changes,
- restructuring the links of the tree via *"rotations"*.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

Mohamed Aly – CMP448 Spring 2013



Rotations maintain the inorder ordering of keys: •  $a \in \alpha, b \in \beta, c \in \gamma \implies a \leq A \leq b \leq B \leq c$ .

A rotation can be performed in O(1) time.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

Mohamed Aly – CMP448 Spring 2013



**IDEA:** Insert x in tree. Color x red. Only redblack property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.



October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

Mohamed Aly – CMP448 Spring 2013



**IDEA:** Insert x in tree. Color x red. Only redblack property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

## Example: • Insert x = 15. • Recolor, moving the violation up the tree. • x = 15. • Recolor, moving the tree.

October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.20

Mohamed Aly – CMP448 Spring 2013



**IDEA:** Insert x in tree. Color x red. Only redblack property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

### **Example:**

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).



October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.21

Mohamed Aly – CMP448 Spring 2013



 $\mathbf{O}$ 

**IDEA:** Insert x in tree. Color x red. Only redblack property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

### **Example:**

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- LEFT-ROTATE(7) and recolor.

October 19, 2005Copyright © 2001-5 by Erik D. Demaine and Charles E. LeisersonL7.22

Mohamed Aly – CMP448 Spring 2013



**IDEA:** Insert x in tree. Color x red. Only redblack property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

### **Example:**

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- LEFT-ROTATE(7) and recolor.

October 19, 2005Copyright © 2001-5 by Erik D. Demaine and Charles E. LeisersonL7.23

Mohamed Aly – CMP448 Spring 2013





## Pseudocode

**RB-INSERT**(T, x)TREE-INSERT(T, x)*color*[x]  $\leftarrow$  RED  $\triangleright$  only RB property 3 can be violated while  $x \neq root[T]$  and color[p[x]] = REDdo if p[x] = left[p[p[x]]]then  $y \leftarrow right[p[p[x]]] \qquad \triangleright y = aunt/uncle of x$ if color[y] = REDthen **(Case 1)** else if x = right[p[x]]then (Case 2) Case 2 falls into Case 3 **(Case 3)** else ("then" clause with "*left*" and "*right*" swapped)  $color[root[T]] \leftarrow BLACK$ 

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.24

Mohamed Aly – CMP448 Spring 2013



# **Graphical notation**

Let  $\bigwedge$  denote a subtree with a black root. All  $\bigwedge$ 's have the same black-height.

October 19, 2005Copyright © 2001-5 by Erik D. Demaine and Charles E. LeisersonL7.25

Mohamed Aly – CMP448 Spring 2013



(Or, children of *A* are swapped.)

Push *C*'s black onto *A* and *D*, and recurse, since *C*'s parent may be red.

October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.26

Mohamed Aly – CMP448 Spring 2013



### Transform to Case 3.

October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.27

Mohamed Aly – CMP448 Spring 2013



October 19, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.28

Mohamed Aly – CMP448 Spring 2013





- Go up the tree performing Case 1, which only recolors nodes.
- If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

**Running time:**  $O(\lg n)$  with O(1) rotations.

RB-DELETE — same asymptotic running time and number of rotations as RB-INSERT (see textbook).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.29

Mohamed Aly – CMP448 Spring 2013

# Recap

- Binary Search Trees
  - Insert, Search, Delete
  - Expected Height
- Red Black Trees