
CMP448: Algorithms

Lecture 07: Binary Search Trees

Mohamed Alaa El-Dien Aly
Computer Engineering Department

Cairo University
Spring 2013

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 2/67

Agenda

Acknowledgment
A lot of slides adapted from the slides of Erik Demaine, Piotr Indyk, and Charles Leiserson

● Binary Search Trees
– Insert, Search, Delete

– Expected Height

● Red Black Trees

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 3/67

Dictionary Data Structure

● Data structures that support
– Insert(data, key)

– Delete(data, key)

– Search(data, key)

● Last lecture
– Hash tables

– Operations in expected constant time

● This lecture
– Binary Trees

– Operations in expected log time

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 4/67

Binary Search Tree

• Each node x has:

– key[x]

– Pointers:

• left[x]

• right[x]

• parent[x]

9

125

1 6

7

8

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.3

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 5/67

Binary Search Tree (BST)

• Property: for any node x:
– For all nodes y in the left

subtree of x:
key[y] ≤ key[x]

– For all nodes y in the right
subtree of x:

key[y] ≥ key[x]

• Given a set of keys, is BST for
those keys unique?

9

125

1 6

7

8

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.4

BST Property

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 6/67

Binary Search Tree (BST)

• Property: for any node x:
– For all nodes y in the left

subtree of x:
key[y] ≤ key[x]

– For all nodes y in the right
subtree of x:

key[y] ≥ key[x]

• Given a set of keys, is BST for
those keys unique?

9

125

1 6

7

8

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.4

BST Property

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 7/67

No uniqueness

9

125

1 6

7

8

7

5 9

1 6 8 12

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.5

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 8/67

What can we do given BST ?

• Sort !

• Inorder-Walk(x):

If x≠NIL then
– Inorder-Walk(left[x])

– print key[x]

– Inorder-Walk(right[x])

• Output: 1 765 8

9

125

1 6

7

89 12

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 9/67

What can we do given BST ?

• Sort !

• Inorder-Walk(x):

If x≠NIL then
– Inorder-Walk(left[x])

– print key[x]

– Inorder-Walk(right[x])

• Output: 1 765 8

9

125

1 6

7

89 12

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 10/67

Sorting, ctd.

• What is the running time of
Inorder-Walk?

• It is O(n)

• Because:

– Each link is traversed
twice

– There are O(n) links

9

125

1 6

7

8

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.7

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 11/67

Sorting, ctd.

• What is the running time of
Inorder-Walk?

• It is O(n)

• Because:

– Each link is traversed
twice

– There are O(n) links

9

125

1 6

7

8

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.7

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 12/67

Sorting, ctd.

• Does it mean that we can
sort n keys in O(n) time ?

• No

• It just means that building
a BST takes Ω(n log n)
time
(in the comparison model)

9

125

1 6

7

8

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.8

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 13/67

Sorting, ctd.

• Does it mean that we can
sort n keys in O(n) time ?

• No

• It just means that building
a BST takes Ω(n log n)
time
(in the comparison model)

9

125

1 6

7

8

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.8

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 14/67

BST as a data structure

• Operations:

– Insert(x)

– Delete(x)

– Search(k)

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 15/67

Search

Search(x):

• If x≠NIL then

– If key[x] = k then return x

– If k < key[x] then return
Search(left[x])

– If k > key[x] then return

Search(right[x])

• Else return NIL
Search(8.5):

9

125

1 6

7

Search(8):

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.10

8

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 16/67

Search

Search(x):

• If x≠NIL then

– If key[x] = k then return x

– If k < key[x] then return
Search(left[x])

– If k > key[x] then return

Search(right[x])

• Else return NIL
Search(8.5):

9

125

1 6

7

Search(8):

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.10

8

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 17/67

Search

Search(x):

• If x≠NIL then

– If key[x] = k then return x

– If k < key[x] then return
Search(left[x])

– If k > key[x] then return

Search(right[x])

• Else return NIL
Search(8.5):

9

125

1 6

7

Search(8):

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.10

8

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 18/67

Predecessor/Successor

• Can modify Search (into Search’) such that,
if k is not stored in BST, we get x such that:
– Either it has the largest key[x]<k, or
– It has the smallest key[x]>k

• Useful when k prone to errors
• What if we always want a successor of k ?

– x=Search’(k)
– If key[x]<k, then return Successor(x)
– Else return x

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.11

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 19/67

Successor

Successor(x):
• If right[x] ≠ NIL then

return Minimum(right[x])
• Otherwise

– y ← p[x]
– While y≠NIL and x=right[y] do

• x ← y
• y ← p[y]

– Return y

9

125

1 6

7

8

y

9

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.12

x

The lowest ancestor that has x in the left subtree

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 20/67

Successor

Successor(x):
• If right[x] ≠ NIL then

return Minimum(right[x])
• Otherwise

– y ← p[x]
– While y≠NIL and x=right[y] do

• x ← y
• y ← p[y]

– Return y

9

125

1 6

7

8

y

9

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.12

x

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 21/67

Successor

Successor(x):
• If right[x] ≠ NIL then

return Minimum(right[x])
• Otherwise

– y ← p[x]
– While y≠NIL and x=right[y] do

• x ← y
• y ← p[y]

– Return y

9

125

1 6

7

8

y

9

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.12

x

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 22/67

Successor

Successor(x):
• If right[x] ≠ NIL then

return Minimum(right[x])
• Otherwise

– y ← p[x]
– While y≠NIL and x=right[y] do

• x ← y
• y ← p[y]

– Return y

9

125

1 6

7

8

y

9

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.12

x

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 23/67

Minimum

Minimum(x)

• While left[x]≠NIL do

– x ← left[x]

• Return x

9

125

1 6

7

8

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.13

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 24/67

Nearest Neighbor

• Assuming keys are numbers
• For a key k, can we find x such that |k-key[x]| is

minimal ?
• Yes:

– key[x] must be either a predecessor or
successor of k

– y=Search’(k) //y is either succ or pred of k
– y’ =Successor(y)
– y’’=Predecessor(y)
– Report the closest of key[y], key[y’], key[y’’]

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.14

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 25/67

Analysis

• How much time does all of
this take ?

• Worst case: O(height)

• Height really important

• Tree better be balanced

9

125

1 6

7

8

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.15

Why? Height is lg n if balanced tree and
n if unbalanced.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 26/67

Constructing BST

Insert(z):
• y ← NIL
• x ← root
• While x ≠ NIL do

– y ← x
– If key[z] < key[x]

then x ← left[x]
else x ← right[x]

• p[z] ← y
• If key[z] < key[y]

then left[y] ← z
else right[y] ← z

October 6, 2004 L7.16

9

125

1 6

7

8

Insert(8.5)

Insert(5.5)

8.5

5.5

y

z

© Piotr Indyk Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 27/67

Analysis

• After we insert n elements,
what is the worst possible
BST height ?

• Pretty bad: n-1

1
2

3
4

5
6

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.17

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 28/67

Average case analysis

• Consider keys 1,2,…,n, in a random order

• Each permutation equally likely

• For each key perform Insert

• What is the likely height of the tree ?

• It is O(log n)

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.18

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 29/67

Average case analysis

• Consider keys 1,2,…,n, in a random order

• Each permutation equally likely

• For each key perform Insert

• What is the likely height of the tree ?

• It is O(log n)

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.18

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 30/67

Introduction to Algorithms October 6, 2004 L7.19© Piotr Indyk

Creating a random BST

1 2 3• n=9 3 4 5 6 7 8 9

1 2 4 5 6 7 8 96

4 5 7 8 98

7 9

5

4

1

2

4 7 9

3 6 8 5 1 2 7 4 9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 31/67

Introduction to Algorithms October 6, 2004 L7.19© Piotr Indyk

Creating a random BST

1 2 3• n=9 3 4 5 6 7 8 9

1 2 4 5 6 7 8 96

4 5 7 8 98

7 9

5

4

1

2

4 7 9

3 6 8 5 1 2 7 4 9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 32/67

Introduction to Algorithms October 6, 2004 L7.19© Piotr Indyk

Creating a random BST

1 2 3• n=9 3 4 5 6 7 8 9

1 2 4 5 6 7 8 96

4 5 7 8 98

7 9

5

4

1

2

4 7 9

3 6 8 5 1 2 7 4 9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 33/67

Introduction to Algorithms October 6, 2004 L7.19© Piotr Indyk

Creating a random BST

1 2 3• n=9 3 4 5 6 7 8 9

1 2 4 5 6 7 8 96

4 5 7 8 98

7 9

5

4

1

2

4 7 9

3 6 8 5 1 2 7 4 9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 34/67

Introduction to Algorithms October 6, 2004 L7.19© Piotr Indyk

Creating a random BST

1 2 3• n=9 3 4 5 6 7 8 9

1 2 4 5 6 7 8 96

4 5 7 8 98

7 9

5

4

1

2

4 7 9

3 6 8 5 1 2 7 4 9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 35/67

Introduction to Algorithms October 6, 2004 L7.19© Piotr Indyk

Creating a random BST

1 2 3• n=9 3 4 5 6 7 8 9

1 2 4 5 6 7 8 96

4 5 7 8 98

7 9

5

4

1

2

4 7 9

3 6 8 5 1 2 7 4 9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 36/67

Random BST

● Expected height?
– O(lg n)

● Proof in the book!
● What if we want height to be O(lg n) in the worst case?

– Red-Black Trees

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 37/67

Balanced search trees

Balanced search tree: A search-tree data
structure for which a height of O(lg n) is
guaranteed when implementing a dynamic
set of n items.

• AVL trees
• 2-3 trees

Examples: • 2-3-4 trees
• B-trees
• Red-black trees

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.2

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 38/67

Red-black trees

This data structure requires an extra one-
bit color field in each node.

Red-black properties:
1. Every node is either red or black.
2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node x to a

descendant leaf have the same number
of black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 39/67

Example of a red-black tree

h = 4

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 40/67

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

1. Every node is either red or black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 41/67

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

2. The root and leaves (NIL’s) are black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 42/67

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

3. If a node is red, then its parent is black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 43/67

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL

bh = 2

bh = 1

bh = 1

bh = 2

bh = 0 NIL NIL NIL NIL NIL NIL

4. All simple paths from any node x to a
descendant leaf have the same number of
black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 44/67

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:
• Merge red nodes

into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 45/67

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:
• Merge red nodes

into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 46/67

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:
• Merge red nodes

into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 47/67

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:
• Merge red nodes

into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 48/67

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:
• Merge red nodes

into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 49/67

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:
• Merge red nodes

into their black
parents.

h′

• This process produces a tree in which each node
has 2, 3, or 4 children.

• The 2-3-4 tree has uniform depth h′ of leaves.
October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 50/67

Proof (continued)

• We have
h′ ≥ h/2, since
at most half
the leaves on any path
are red.

• The number of leaves
in each tree is n + 1
⇒ n + 1 ≥ 2h'

⇒ lg(n + 1) ≥ h' ≥ h/2
⇒ h ≤ 2 lg(n + 1).

h′

h

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

The number of leaves in
a RBT is at least n + 1

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 51/67

Proof (continued)

• We have
h′ ≥ h/2, since
at most half
the leaves on any path
are red.

• The number of leaves
in each tree is n + 1
⇒ n + 1 ≥ 2h'

⇒ lg(n + 1) ≥ h' ≥ h/2
⇒ h ≤ 2 lg(n + 1).

h′

h

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

The number of leaves in
a RBT is n + 1 (every
node inserted adds two
children and removes one
except the root) which is
at least 2h' if we assume
only 2 children

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 52/67

Proof (continued)

• We have
h′ ≥ h/2, since
at most half
the leaves on any path
are red.

• The number of leaves
in each tree is n + 1
⇒ n + 1 ≥ 2h'

⇒ lg(n + 1) ≥ h' ≥ h/2
⇒ h ≤ 2 lg(n + 1).

h′

h

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

The number of leaves in
a RBT is n + 1

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 53/67

Query operations

Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR

all run in O(lg n) time on a red-black
tree with n nodes.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 54/67

Modifying operations

The operations INSERT and DELETE cause
modifications to the red-black tree:
• the operation itself,

• color changes,

• restructuring the links of the tree via
“rotations”.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 55/67

Rotations

A

B

α β

γ

RIGHT-ROTATE(B)

B

A

γβ

α
LEFT-ROTATE(A)

Rotations maintain the inorder ordering of keys:
• a ∈ α, b ∈ β, c ∈ γ ⇒ a ≤ A ≤ b ≤ B ≤ c.

A rotation can be performed in O(1) time.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 56/67

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:

88

1010

1818

2626

2222

77

33

1111

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 57/67

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
• Insert x =15.
• Recolor, moving the

88 1111

1010

1818

2626

2222

77

1515

33

violation up the tree.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.20

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 58/67

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
• Insert x =15.
• Recolor, moving the

88 1111

1010

1818

2626

2222

77

1515

33

violation up the tree.
• RIGHT-ROTATE(18).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.21

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 59/67

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
• Insert x =15.
• Recolor, moving the 88

1111

1010

1818

2626

2222

77

1515

33

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.
October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.22

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 60/67

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).

88 1111

1010

1818

2626

2222

77

1515

33

• LEFT-ROTATE(7) and recolor.
October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.23

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 61/67

Pseudocode

RB-INSERT(T, x)
TREE-INSERT(T, x)
color[x] ← RED ⊳ only RB property 3 can be violated
while x ≠ root[T] and color[p[x]] = RED

do if p[x] = left[p[p[x]]
then y ← right[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED

then 〈Case 1〉
else if x = right[p[x]]

then 〈Case 2〉 ⊳ Case 2 falls into Case 3
〈Case 3〉

else 〈“then” clause with “left” and “right” swapped〉
color[root[T]] ← BLACK

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.24

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 62/67

Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.25

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 63/67

Case 1

BB

CC

DDAA

x

y

BB

CC

DDAA

new x
Recolor

(Or, children of Push C’s black onto
A are swapped.) A and D, and recurse,

since C’s parent may
be red.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.26

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 64/67

Case 2

B

C

A

x

LEFT-ROTATE(A) CC
y y

BB

x A

Transform to Case 3.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.27

A

B

C

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 65/67

Case 3

Done! No more
violations of RB
property 3 are
possible.

A

C

B

x

y
RIGHT-ROTATE(C)

A

B

C

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.28

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 66/67

Analysis

• Go up the tree performing Case 1, which only
recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(lg n) with O(1) rotations.

RB-DELETE — same asymptotic running time
and number of rotations as RB-INSERT (see
textbook).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.29

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 67/67

Recap

● Binary Search Trees
– Insert, Search, Delete

– Expected Height

● Red Black Trees

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

