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Agenda

Acknowledgment
A lot of slides adapted from the slides of Erik Demaine, Piotr Indyk, and Charles Leiserson

● Binary Search Trees
– Insert, Search, Delete

– Expected Height

● Red Black Trees
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Dictionary Data Structure

● Data structures that support
– Insert(data, key)

– Delete(data, key)

– Search(data, key)

● Last lecture
– Hash tables

– Operations in expected constant time

● This lecture
– Binary Trees

– Operations in expected log time
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Binary Search Tree

• Each node x has:

– key[x]

– Pointers:  

• left[x]  

• right[x] 

• parent[x] 
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Binary Search Tree (BST)

• Property: for any node x:
– For all nodes y in the left 

subtree of x: 
key[y] ≤ key[x]

– For all nodes y in the right
subtree of x: 

key[y] ≥ key[x]

• Given a set of keys, is BST for
those keys unique? 
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No uniqueness 
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What can we do given BST ?

• Sort !

• Inorder-Walk(x):

If x≠NIL then
– Inorder-Walk( left[x] ) 

– print  key[x] 

– Inorder-Walk( right[x] ) 

• Output: 1 765 8 
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Sorting, ctd.

• What is the running time of 
Inorder-Walk? 

• It is O(n) 

• Because: 

– Each link is traversed 
twice 

– There are  O(n) links 
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Sorting, ctd.

• Does it mean that we can 
sort n keys in O(n) time ? 

• No

• It just means that building 
a BST takes Ω(n log n)
time 
(in the comparison model) 
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BST as a data structure

• Operations: 

– Insert(x) 

– Delete(x) 

– Search(k) 

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.9 
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Search

Search(x): 

• If x≠NIL then 

– If key[x] = k then return x 

– If k < key[x] then return 
Search( left[x] )

– If k > key[x] then return

Search( right[x] )

• Else return NIL
Search(8.5):
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Search
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Predecessor/Successor

• Can modify Search (into Search’) such that,
if k is not stored in BST, we get x such that: 
– Either it has the largest key[x]<k, or
– It has the smallest key[x]>k 

• Useful when k prone to errors 
• What if we always want a successor of k ?

– x=Search’(k) 
– If key[x]<k, then return Successor(x) 
– Else return  x 

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.11 
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Successor

Successor(x):
• If right[x] ≠ NIL then 

return Minimum( right[x] ) 
• Otherwise 

– y  ← p[x] 
– While y≠NIL and x=right[y] do 

• x ← y 
• y ← p[y]

– Return  y
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Successor
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Minimum

Minimum( x )

• While left[x]≠NIL do 

– x  ← left[x] 

• Return x 
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Nearest Neighbor

• Assuming keys are numbers
• For a key k, can we find x such that |k-key[x]| is 

minimal ? 
• Yes:

– key[x]  must be either a predecessor or
successor of k 

– y=Search’(k) //y is either succ or pred of k 
– y’ =Successor(y) 
– y’’=Predecessor(y) 
– Report the closest of key[y], key[y’], key[y’’]

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.14 
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Analysis

• How much time does all of 
this take ? 

• Worst case: O(height) 

• Height really important 

• Tree better be balanced 
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Constructing BST

Insert(z): 
• y ← NIL
• x ← root
• While x ≠ NIL do

– y  ← x
– If key[z] < key[x]

then x ← left[x]
else x ← right[x]

• p[z] ← y
• If key[z] < key[y]

then left[y] ← z
else right[y] ← z

October 6, 2004 L7.16 
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Analysis

• After we insert n elements, 
what is the worst possible 
BST height ? 

• Pretty bad: n-1 
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Average case analysis

• Consider keys 1,2,…,n, in a random order 

• Each permutation equally likely 

• For each key perform Insert 

• What is the likely height of the tree ? 

• It is O(log n) 

© Piotr Indyk Introduction to Algorithms October 6, 2004 L7.18 
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Introduction to Algorithms October 6, 2004 L7.19© Piotr Indyk
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Random BST

● Expected height?
– O(lg n)

● Proof in the book!
● What if we want height to be O(lg n) in the worst case?

– Red-Black Trees



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 37/67

Balanced search trees

Balanced search tree: A search-tree data 
structure for which a height of O(lg n) is 
guaranteed when implementing a dynamic 
set of n items. 

• AVL trees
• 2-3 trees 

Examples: • 2-3-4 trees 
• B-trees 
• Red-black trees 

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.2 
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Red-black trees

This data structure requires an extra one-
bit color field in each node. 

Red-black properties: 
1. Every node is either red or black. 
2. The root and leaves (NIL’s) are black. 
3. If a node is red, then its parent is black.
4. All simple paths from any node x to a 

descendant leaf have the same number 
of black nodes = black-height(x). 

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3 
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Example of a red-black tree 

h = 4 

88 1111

1010

1818

2626

2222

33 

77 

NIL NIL 

NIL NIL NIL NIL 

NIL 

NIL NIL 

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4 
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Example of a red-black tree 

88 1111

1010

1818

2626

2222

33 

77 

NIL NIL 

NIL NIL NIL NIL 

NIL 

NIL NIL 

1. Every node is either red or black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5 
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Example of a red-black tree 

88 1111

1010

1818

2626

2222

33 

77 

NIL NIL 

NIL NIL NIL NIL 

NIL 

NIL NIL 

2. The root and leaves (NIL’s) are black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6 
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Example of a red-black tree 

88 1111

1010

1818

2626

2222

33 

77 

NIL NIL 

NIL NIL NIL NIL 

NIL 

NIL NIL 

3. If a node is red, then its parent is black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7 
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Example of a red-black tree 

88 1111

1010

1818

2626

2222

33 

77 

NIL NIL 

NIL 

bh = 2 

bh = 1 

bh = 1 

bh = 2 

bh = 0 NIL NIL NIL NIL NIL NIL

4. All simple paths from any node x to a 
descendant leaf have the same number of 
black nodes = black-height(x). 

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8 
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:
• Merge red nodes 

into their black 
parents. 

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9 
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:
• Merge red nodes 

into their black 
parents. 

h′ 

• This process produces a tree in which each node 
has 2, 3, or 4 children. 

• The 2-3-4 tree has uniform depth h′ of leaves. 
October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14 
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Proof (continued)

• We have 
h′ ≥  h/2, since 
at most half 
the leaves on any path 
are red. 

• The number of leaves 
in each tree is n + 1
⇒ n + 1 ≥ 2h' 

⇒ lg(n + 1) ≥ h' ≥ h/2 
⇒ h ≤ 2 lg(n + 1). 

h′ 

h 

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15 
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Proof (continued)

• We have 
h′ ≥  h/2, since 
at most half 
the leaves on any path 
are red. 

• The number of leaves 
in each tree is n + 1
⇒ n + 1 ≥ 2h' 

⇒ lg(n + 1) ≥ h' ≥ h/2 
⇒ h ≤ 2 lg(n + 1). 

h′ 

h 

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15 

The number of leaves in 
a RBT is n + 1 (every
node inserted adds two 
children and removes one
except the root) which is
at least 2h' if we assume
only 2 children
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Proof (continued)

• We have 
h′ ≥  h/2, since 
at most half 
the leaves on any path 
are red. 

• The number of leaves 
in each tree is n + 1
⇒ n + 1 ≥ 2h' 

⇒ lg(n + 1) ≥ h' ≥ h/2 
⇒ h ≤ 2 lg(n + 1). 
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October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15 
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a RBT is n + 1
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Query operations

Corollary. The queries SEARCH, MIN, 
MAX, SUCCESSOR, and PREDECESSOR 

all run in O(lg n) time on a red-black 
tree with n nodes. 

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16 
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Modifying operations

The operations INSERT and DELETE cause 
modifications to the red-black tree: 
• the operation itself,

• color changes, 

• restructuring the links of the tree via
“rotations”. 

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17 
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Rotations 

A

B

α β 

γ 

RIGHT-ROTATE(B) 

B

A

γβ 

α
LEFT-ROTATE(A) 

Rotations maintain the inorder ordering of keys:
• a ∈ α, b ∈ β, c ∈ γ  ⇒ a ≤ A ≤ b ≤ B ≤ c.

A rotation can be performed in O(1) time.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18 
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Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 

Example: 

88 

1010

1818

2626

2222

77 

33 

1111

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19 
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Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 

Example: 
• Insert x =15.
• Recolor, moving the 

88 1111

1010

1818

2626

2222

77

1515

33

violation up the tree.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.20 
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Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 

Example: 
• Insert x =15.
• Recolor, moving the 

88 1111

1010

1818

2626

2222

77

1515

33

violation up the tree.
• RIGHT-ROTATE(18). 

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.21 
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Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 

Example: 
• Insert x =15.
• Recolor, moving the 88

1111

1010

1818

2626

2222

77

1515

33

violation up the tree.
• RIGHT-ROTATE(18). 
• LEFT-ROTATE(7) and recolor. 
October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.22 
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Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 

Example: 
• Insert x =15.
• Recolor, moving the 

violation up the tree.
• RIGHT-ROTATE(18). 

88 1111

1010

1818

2626

2222

77 

1515

33 

• LEFT-ROTATE(7) and recolor. 
October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.23 
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Pseudocode

RB-INSERT(T, x) 
TREE-INSERT(T, x) 
color[x] ← RED ⊳ only RB property 3 can be violated 
while x ≠ root[T] and color[p[x]] = RED 

do if p[x] = left[p[p[x]] 
then y ← right[p[p[x]] ⊳ y = aunt/uncle of x 

if color[y] = RED 

then 〈Case 1〉 
else if x = right[p[x]] 

then 〈Case 2〉 ⊳ Case 2 falls into Case 3 
〈Case 3〉 

else 〈“then” clause with “left” and “right” swapped〉 
color[root[T]] ← BLACK 
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Graphical notation

Let denote a subtree with a black root. 

All ’s have the same black-height. 
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Case 1 

BB 

CC 

DDAA 

x 

y 

BB 

CC 

DDAA 

new x 
Recolor 

(Or, children of Push C’s black onto 
A are swapped.) A and D, and recurse, 

since C’s parent may 
be red. 
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Case 2

B 

C 

A 

x 

LEFT-ROTATE(A) CC
y y

BB

x A

Transform to Case 3. 
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Case 3

Done! No more 
violations of RB 
property 3 are 
possible. 

A 

C 

B 

x 

y 
RIGHT-ROTATE(C) 

A 

B 

C 
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Analysis

• Go up the tree performing Case 1, which only 
recolors nodes. 

• If Case 2 or Case 3 occurs, perform 1 or 2 
rotations, and terminate. 

Running time: O(lg n) with O(1) rotations.

RB-DELETE — same asymptotic running time 
and number of rotations as RB-INSERT (see 
textbook). 
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Recap

● Binary Search Trees
– Insert, Search, Delete

– Expected Height

● Red Black Trees


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

