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Paths in graphs

Consider a digraph G = (V, E) with edge-weight 
function w : E → R.  The weight of path p = v1 →
v2 → ⋯ → vk is defined to be
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Paths in graphs

Consider a digraph G = (V, E) with edge-weight 
function w : E → R.  The weight of path p = v1 →
v2 → ⋯ → vk is defined to be
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Example:

w(p) = –2
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Shor test paths

A shortest path from u to v is a path of 
minimum weight from u to v.  The shortest-
path weight from u to v is defined as

δ(u, v) = min{w(p) : p is a path from u to v}.

Note: δ(u, v) = ∞ if no path from u to v exists. 
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Optimal substructure

Theorem. A subpath of a shortest path is a 
shortest path.
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Optimal substructure

Theorem. A subpath of a shortest path is a 
shortest path.

Proof. Cut and paste:
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Optimal substructure

Theorem. A subpath of a shortest path is a 
shortest path.

Proof. Cut and paste:
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Triangle inequality

Theorem. For all u, v, x ∈ V, we have
δ(u, v) ≤ δ(u, x) + δ(x, v).
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Triangle inequality

Theorem. For all u, v, x ∈ V, we have
δ(u, v) ≤ δ(u, x) + δ(x, v).

u

Proof.

x

vδ(u, v)

δ(u, x) δ(x, v)

Assume δ(u, v) > δ(u, x) + δ(x, v)
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Well-definedness of shor test 
paths

If a graph G contains a negative-weight cycle, 
then some shortest paths may not exist.
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Well-definedness of shor test 
paths

If a graph G contains a negative-weight cycle, 
then some shortest paths may not exist.

Example:

uu vv

…

< 0
We can keep traversing the
 negative-weight cycle to 
get even “shorter” paths

The shortest path weight δ(u,v) in that case is -∞
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Single-source shor test paths
Problem. From a given source vertex s ∈ V, find 
the shortest-path weights δ(s, v) for all v ∈ V.

If all edge weights w(u, v) are nonnegative, all 
shortest-path weights must exist. 

IDEA: Greedy.
1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step add to S the vertex v ∈ V – S

whose distance estimate from s is minimal.
3. Update the distance estimates of vertices 

adjacent to v.
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Dijkstra’s algor ithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞
S ← ∅
Q ← V ⊳ Q is a priority queue maintaining V – S
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Dijkstra’s algor ithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞
S ← ∅
Q ← V ⊳ Q is a priority queue maintaining V – S
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 18/64

Introduction to Algorithms November 1, 2004 L14.15© 2001–4 by Charles E. Leiserson

Dijkstra’s algor ithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞
S ← ∅
Q ← V ⊳ Q is a priority queue maintaining V – S
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

relaxation 
step

Implicit DECREASE-KEY
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Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2

Graph with 
nonnegative 
edge weights:
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Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2

Initialize:

A B C D EQ:
0 ∞ ∞ ∞ ∞

S: {}

0

∞

∞ ∞

∞
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Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A }

0

∞

∞ ∞

∞“A” ← EXTRACT-MIN(Q):
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Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A }

0

10

3 ∞

∞

10 3

Relax all edges leaving A:

∞ ∞
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Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C }

0

10

3 ∞

∞

10 3

“C” ← EXTRACT-MIN(Q):

∞ ∞
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Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C }

0

7

3 5

11

10 3
7 11 5

Relax all edges leaving C:

∞ ∞
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Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C, E }

0

7

3 5

11

10 3
7 11 5

“E” ← EXTRACT-MIN(Q):

∞ ∞



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 26/64

Introduction to Algorithms November 1, 2004 L14.23© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C, E }

0

7

3 5

11

10 3 ∞ ∞
7 11 5
7 11

Relax all edges leaving E:
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Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C, E, B }

0

7

3 5

11

10 3 ∞ ∞
7 11 5
7 11

“B” ← EXTRACT-MIN(Q):
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Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C, E, B }

0

7

3 5

9

10 3 ∞ ∞
7 11 5
7 11

Relax all edges leaving B:

9
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Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C, E, B, D }

0

7

3 5

9

10 3 ∞ ∞
7 11 5
7 11

9

“D” ← EXTRACT-MIN(Q):
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Correctness — Par t I
Lemma. Initializing d[s] ← 0 and d[v] ← ∞ for all 
v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V, 
and this invariant is maintained over any sequence 
of relaxation steps.
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Correctness — Par t I
Lemma. Initializing d[s] ← 0 and d[v] ← ∞ for all 
v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V, 
and this invariant is maintained over any sequence 
of relaxation steps.
Proof. Suppose not.  Let v be the first vertex for 
which d[v] < δ(s, v), and let u be the vertex that 
caused d[v] to change: d[v] = d[u] + w(u, v).  Then, 

d[v] < δ(s, v) supposition
≤ δ(s, u) + δ(u, v) triangle inequality
≤ δ(s,u) + w(u, v) sh. path ≤ specific path
≤ d[u] + w(u, v) v is first violation

Contradiction.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 32/64

Introduction to Algorithms November 1, 2004 L14.28© 2001–4 by Charles E. Leiserson

Correctness — Par t I
Lemma. Initializing d[s] ← 0 and d[v] ← ∞ for all 
v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V, 
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Correctness — Par t II
Lemma. Let u be v’s predecessor on a shortest 
path from s to v.  Then, if d[u] = δ(s, u) and edge 
(u, v) is relaxed, we have d[v] = δ(s, v) after the 
relaxation.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 34/64

Introduction to Algorithms November 1, 2004 L14.30© 2001–4 by Charles E. Leiserson

Correctness — Par t II
Lemma. Let u be v’s predecessor on a shortest 
path from s to v.  Then, if d[u] = δ(s, u) and edge 
(u, v) is relaxed, we have d[v] = δ(s, v) after the 
relaxation.

Proof. Observe that δ(s, v) = δ(s, u) + w(u, v).  
Suppose that d[v] > δ(s, v) before the relaxation.  
(Otherwise, we’re done.)  Then, the test d[v] > 
d[u] + w(u, v) succeeds, because d[v] > δ(s, v) = 
δ(s, u) + w(u, v) = d[u] + w(u, v), and the 
algorithm sets d[v] = d[u] + w(u, v) = δ(s, v). 

Because u is v's predecessor on the shortest path
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Correctness — Par t II
Lemma. Let u be v’s predecessor on a shortest 
path from s to v.  Then, if d[u] = δ(s, u) and edge 
(u, v) is relaxed, we have d[v] = δ(s, v) after the 
relaxation.

Proof. Observe that δ(s, v) = δ(s, u) + w(u, v).  
Suppose that d[v] > δ(s, v) before the relaxation.  
(Otherwise, we’re done.)  Then, the test d[v] > 
d[u] + w(u, v) succeeds, because d[v] > δ(s, v) = 
δ(s, u) + w(u, v) = d[u] + w(u, v), and the 
algorithm sets d[v] = d[u] + w(u, v) = δ(s, v). 



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 36/64

Introduction to Algorithms November 1, 2004 L14.31© 2001–4 by Charles E. Leiserson

Correctness — Par t III
Theorem. Dijkstra’s algorithm terminates with 
d[v] = δ(s, v) for all v ∈ V.
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Correctness — Par t III
Theorem. Dijkstra’s algorithm terminates with 
d[v] = δ(s, v) for all v ∈ V.
Proof. It suffices to show that d[v] = δ(s, v) for every 
v ∈ V when v is added to S.  Suppose u is the first 
vertex added to S for which d[u] > δ(s, u). Let y be the 
first vertex in V – S along a shortest path from s to u, 
and let x be its predecessor:

ss
xx yy

uu

S, just before 
adding u.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 38/64

Introduction to Algorithms November 1, 2004 L14.33© 2001–4 by Charles E. Leiserson

Correctness — Par t III 
(continued)

Since u is the first vertex violating the claimed 
invariant, we have d[x] = δ(s, x).  When x was 
added to S, the edge (x, y) was relaxed, which 
implies that d[y] = δ(s, y) ≤ δ(s, u) < d[u].  But, 
d[u] ≤ d[y] by our choice of u.  Contradiction.

ss
xx yy

uuS
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Analysis of Dijkstra
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)
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Analysis of Dijkstra

|V |
times

while Q ∅
do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

≠
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Analysis of Dijkstra

degree(u)
times

|V |
times

while Q ∅
do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

≠
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Analysis of Dijkstra

degree(u)
times

|V |
times

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s.

while Q ∅
do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

≠
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Analysis of Dijkstra

degree(u)
times

|V |
times

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s.

Time = Θ(V·TEXTRACT-MIN + E·TDECREASE-KEY)

Note: Same formula as in the analysis of Prim’s 
minimum spanning tree algorithm.

while Q ∅
do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

≠
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Analysis of Dijkstra 
(continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total
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Analysis of Dijkstra 
(continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)
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Analysis of Dijkstra 
(continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)

binary 
heap O(lg V) O(lg V) O(E lg V)
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Unweighted graphs

Suppose that w(u, v) = 1 for all (u, v) ∈ E.  
Can Dijkstra’s algorithm be improved?
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Unweighted graphs

• Use a simple FIFO queue instead of a priority 
queue.

Suppose that w(u, v) = 1 for all (u, v) ∈ E.  
Can Dijkstra’s algorithm be improved?
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Unweighted graphs

while Q ∅
do u ← DEQUEUE(Q)

for each v ∈ Adj[u]
do if d[v] = ∞

then d[v] ← d[u] + 1
ENQUEUE(Q, v)

• Use a simple FIFO queue instead of a priority 
queue.

Breadth-first search

Suppose that w(u, v) = 1 for all (u, v) ∈ E.  
Can Dijkstra’s algorithm be improved?

≠
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Unweighted graphs

while Q ≠ ∅
do u ← DEQUEUE(Q)

for each v ∈ Adj[u]
do if d[v] = ∞

then d[v] ← d[u] + 1
ENQUEUE(Q, v)

• Use a simple FIFO queue instead of a priority 
queue.

Analysis: Time = O(V + E).

Breadth-first search

Suppose that w(u, v) = 1 for all (u, v) ∈ E.  
Can Dijkstra’s algorithm be improved?

≠
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Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:
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Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a

0

0
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Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b  d

0

1

1

1  1
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Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b d  c  e

0

1

1

2 2

1  2  2
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Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b d c  e

0

1

1

2 2

2  2
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Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b d c e

0

1

1

2 2

2
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Example of breadth-fir st 
search
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Correctness of BFS

Key idea:
The FIFO Q in breadth-first search mimics 
the priority queue Q in Dijkstra.
• Invar iant: v comes after u in Q implies that 

d[v] = d[u] or d[v] = d[u] + 1.

while Q ≠ ∅
do u ← DEQUEUE(Q)

for each v ∈ Adj[u]
do if d[v] = ∞

then d[v] ← d[u] + 1
ENQUEUE(Q, v)
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Recap
● Properties of shortest paths
● Dijkstra's Algorithm
● Correctness
● Analysis
● Breadth-First Search
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