
CMP448: Algorithms

Lecture 13: Dijkstra's Algorithm

Mohamed Alaa El-Dien Aly
Computer Engineering Department

Cairo University
Spring 2013



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 2/64

Agenda

Acknowledgment
A lot of slides adapted from the slides of Erik Demaine and Charles Leiserson.

● Properties of shortest paths
● Dijkstra's Algorithm
● Correctness
● Analysis
● Breadth-First Search



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 3/64

Introduction to Algorithms November 1, 2004 L14.2© 2001–4 by Charles E. Leiserson

Paths in graphs

Consider a digraph G = (V, E) with edge-weight 
function w : E → R.  The weight of path p = v1 →
v2 → ⋯ → vk is defined to be

∑
−

=
+=

1

1
1),()(

k

i
ii vvwpw .



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 4/64

Introduction to Algorithms November 1, 2004 L14.3© 2001–4 by Charles E. Leiserson

Paths in graphs

Consider a digraph G = (V, E) with edge-weight 
function w : E → R.  The weight of path p = v1 →
v2 → ⋯ → vk is defined to be

∑
−

=
+=

1

1
1),()(

k

i
ii vvwpw .

v1
v1

v2
v2

v3
v3

v4
v4

v5
v54 –2 –5 1

Example:

w(p) = –2



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 5/64

Introduction to Algorithms November 1, 2004 L14.4© 2001–4 by Charles E. Leiserson

Shor test paths

A shortest path from u to v is a path of 
minimum weight from u to v.  The shortest-
path weight from u to v is defined as

δ(u, v) = min{w(p) : p is a path from u to v}.

Note: δ(u, v) = ∞ if no path from u to v exists. 



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 6/64

Introduction to Algorithms November 1, 2004 L14.4© 2001–4 by Charles E. Leiserson

Shor test paths

A shortest path from u to v is a path of 
minimum weight from u to v.  The shortest-
path weight from u to v is defined as

δ(u, v) = min{w(p) : p is a path from u to v}.

Note: δ(u, v) = ∞ if no path from u to v exists. 



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 7/64

Introduction to Algorithms November 1, 2004 L14.5© 2001–4 by Charles E. Leiserson

Optimal substructure

Theorem. A subpath of a shortest path is a 
shortest path.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 8/64

Introduction to Algorithms November 1, 2004 L14.6© 2001–4 by Charles E. Leiserson

Optimal substructure

Theorem. A subpath of a shortest path is a 
shortest path.

Proof. Cut and paste:



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 9/64

Introduction to Algorithms November 1, 2004 L14.7© 2001–4 by Charles E. Leiserson

Optimal substructure

Theorem. A subpath of a shortest path is a 
shortest path.

Proof. Cut and paste:



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 10/64

Introduction to Algorithms November 1, 2004 L14.8© 2001–4 by Charles E. Leiserson

Triangle inequality

Theorem. For all u, v, x ∈ V, we have
δ(u, v) ≤ δ(u, x) + δ(x, v).



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 11/64

Introduction to Algorithms November 1, 2004 L14.9© 2001–4 by Charles E. Leiserson

Triangle inequality

Theorem. For all u, v, x ∈ V, we have
δ(u, v) ≤ δ(u, x) + δ(x, v).

u

Proof.

x

vδ(u, v)

δ(u, x) δ(x, v)

Assume δ(u, v) > δ(u, x) + δ(x, v)



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 12/64

Introduction to Algorithms November 1, 2004 L14.10© 2001–4 by Charles E. Leiserson

Well-definedness of shor test 
paths

If a graph G contains a negative-weight cycle, 
then some shortest paths may not exist.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 13/64

Introduction to Algorithms November 1, 2004 L14.11© 2001–4 by Charles E. Leiserson

Well-definedness of shor test 
paths

If a graph G contains a negative-weight cycle, 
then some shortest paths may not exist.

Example:

uu vv

…

< 0
We can keep traversing the
 negative-weight cycle to 
get even “shorter” paths

The shortest path weight δ(u,v) in that case is -∞



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 14/64

Introduction to Algorithms November 1, 2004 L14.12© 2001–4 by Charles E. Leiserson

Single-source shor test paths
Problem. From a given source vertex s ∈ V, find 
the shortest-path weights δ(s, v) for all v ∈ V.

If all edge weights w(u, v) are nonnegative, all 
shortest-path weights must exist. 

IDEA: Greedy.
1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step add to S the vertex v ∈ V – S

whose distance estimate from s is minimal.
3. Update the distance estimates of vertices 

adjacent to v.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 15/64

Introduction to Algorithms November 1, 2004 L14.12© 2001–4 by Charles E. Leiserson

Single-source shor test paths
Problem. From a given source vertex s ∈ V, find 
the shortest-path weights δ(s, v) for all v ∈ V.

If all edge weights w(u, v) are nonnegative, all 
shortest-path weights must exist. 

IDEA: Greedy.
1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step add to S the vertex v ∈ V – S

whose distance estimate from s is minimal.
3. Update the distance estimates of vertices 

adjacent to v.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 16/64

Introduction to Algorithms November 1, 2004 L14.13© 2001–4 by Charles E. Leiserson

Dijkstra’s algor ithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞
S ← ∅
Q ← V ⊳ Q is a priority queue maintaining V – S



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 17/64

Introduction to Algorithms November 1, 2004 L14.14© 2001–4 by Charles E. Leiserson

Dijkstra’s algor ithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞
S ← ∅
Q ← V ⊳ Q is a priority queue maintaining V – S
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 18/64

Introduction to Algorithms November 1, 2004 L14.15© 2001–4 by Charles E. Leiserson

Dijkstra’s algor ithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞
S ← ∅
Q ← V ⊳ Q is a priority queue maintaining V – S
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

relaxation 
step

Implicit DECREASE-KEY



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 19/64

Introduction to Algorithms November 1, 2004 L14.16© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2

Graph with 
nonnegative 
edge weights:



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 20/64

Introduction to Algorithms November 1, 2004 L14.17© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2

Initialize:

A B C D EQ:
0 ∞ ∞ ∞ ∞

S: {}

0

∞

∞ ∞

∞



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 21/64

Introduction to Algorithms November 1, 2004 L14.18© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A }

0

∞

∞ ∞

∞“A” ← EXTRACT-MIN(Q):



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 22/64

Introduction to Algorithms November 1, 2004 L14.19© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A }

0

10

3 ∞

∞

10 3

Relax all edges leaving A:

∞ ∞



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 23/64

Introduction to Algorithms November 1, 2004 L14.20© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C }

0

10

3 ∞

∞

10 3

“C” ← EXTRACT-MIN(Q):

∞ ∞



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 24/64

Introduction to Algorithms November 1, 2004 L14.21© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C }

0

7

3 5

11

10 3
7 11 5

Relax all edges leaving C:

∞ ∞



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 25/64

Introduction to Algorithms November 1, 2004 L14.22© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C, E }

0

7

3 5

11

10 3
7 11 5

“E” ← EXTRACT-MIN(Q):

∞ ∞



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 26/64

Introduction to Algorithms November 1, 2004 L14.23© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C, E }

0

7

3 5

11

10 3 ∞ ∞
7 11 5
7 11

Relax all edges leaving E:



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 27/64

Introduction to Algorithms November 1, 2004 L14.24© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C, E, B }

0

7

3 5

11

10 3 ∞ ∞
7 11 5
7 11

“B” ← EXTRACT-MIN(Q):



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 28/64

Introduction to Algorithms November 1, 2004 L14.25© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C, E, B }

0

7

3 5

9

10 3 ∞ ∞
7 11 5
7 11

Relax all edges leaving B:

9



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 29/64

Introduction to Algorithms November 1, 2004 L14.26© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s 
algor ithm

AA

BB DD

CC EE

10

3

1 4 7 9
8

2

2A B C D EQ:
0 ∞ ∞ ∞ ∞

S: { A, C, E, B, D }

0

7

3 5

9

10 3 ∞ ∞
7 11 5
7 11

9

“D” ← EXTRACT-MIN(Q):



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 30/64

Introduction to Algorithms November 1, 2004 L14.27© 2001–4 by Charles E. Leiserson

Correctness — Par t I
Lemma. Initializing d[s] ← 0 and d[v] ← ∞ for all 
v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V, 
and this invariant is maintained over any sequence 
of relaxation steps.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 31/64

Introduction to Algorithms November 1, 2004 L14.28© 2001–4 by Charles E. Leiserson

Correctness — Par t I
Lemma. Initializing d[s] ← 0 and d[v] ← ∞ for all 
v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V, 
and this invariant is maintained over any sequence 
of relaxation steps.
Proof. Suppose not.  Let v be the first vertex for 
which d[v] < δ(s, v), and let u be the vertex that 
caused d[v] to change: d[v] = d[u] + w(u, v).  Then, 

d[v] < δ(s, v) supposition
≤ δ(s, u) + δ(u, v) triangle inequality
≤ δ(s,u) + w(u, v) sh. path ≤ specific path
≤ d[u] + w(u, v) v is first violation

Contradiction.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 32/64

Introduction to Algorithms November 1, 2004 L14.28© 2001–4 by Charles E. Leiserson

Correctness — Par t I
Lemma. Initializing d[s] ← 0 and d[v] ← ∞ for all 
v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V, 
and this invariant is maintained over any sequence 
of relaxation steps.
Proof. Suppose not.  Let v be the first vertex for 
which d[v] < δ(s, v), and let u be the vertex that 
caused d[v] to change: d[v] = d[u] + w(u, v).  Then, 

d[v] < δ(s, v) supposition
≤ δ(s, u) + δ(u, v) triangle inequality
≤ δ(s,u) + w(u, v) sh. path ≤ specific path
≤ d[u] + w(u, v) v is first violation

Contradiction.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 33/64

Introduction to Algorithms November 1, 2004 L14.29© 2001–4 by Charles E. Leiserson

Correctness — Par t II
Lemma. Let u be v’s predecessor on a shortest 
path from s to v.  Then, if d[u] = δ(s, u) and edge 
(u, v) is relaxed, we have d[v] = δ(s, v) after the 
relaxation.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 34/64

Introduction to Algorithms November 1, 2004 L14.30© 2001–4 by Charles E. Leiserson

Correctness — Par t II
Lemma. Let u be v’s predecessor on a shortest 
path from s to v.  Then, if d[u] = δ(s, u) and edge 
(u, v) is relaxed, we have d[v] = δ(s, v) after the 
relaxation.

Proof. Observe that δ(s, v) = δ(s, u) + w(u, v).  
Suppose that d[v] > δ(s, v) before the relaxation.  
(Otherwise, we’re done.)  Then, the test d[v] > 
d[u] + w(u, v) succeeds, because d[v] > δ(s, v) = 
δ(s, u) + w(u, v) = d[u] + w(u, v), and the 
algorithm sets d[v] = d[u] + w(u, v) = δ(s, v). 

Because u is v's predecessor on the shortest path



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 35/64

Introduction to Algorithms November 1, 2004 L14.30© 2001–4 by Charles E. Leiserson

Correctness — Par t II
Lemma. Let u be v’s predecessor on a shortest 
path from s to v.  Then, if d[u] = δ(s, u) and edge 
(u, v) is relaxed, we have d[v] = δ(s, v) after the 
relaxation.

Proof. Observe that δ(s, v) = δ(s, u) + w(u, v).  
Suppose that d[v] > δ(s, v) before the relaxation.  
(Otherwise, we’re done.)  Then, the test d[v] > 
d[u] + w(u, v) succeeds, because d[v] > δ(s, v) = 
δ(s, u) + w(u, v) = d[u] + w(u, v), and the 
algorithm sets d[v] = d[u] + w(u, v) = δ(s, v). 



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 36/64

Introduction to Algorithms November 1, 2004 L14.31© 2001–4 by Charles E. Leiserson

Correctness — Par t III
Theorem. Dijkstra’s algorithm terminates with 
d[v] = δ(s, v) for all v ∈ V.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 37/64

Introduction to Algorithms November 1, 2004 L14.32© 2001–4 by Charles E. Leiserson

Correctness — Par t III
Theorem. Dijkstra’s algorithm terminates with 
d[v] = δ(s, v) for all v ∈ V.
Proof. It suffices to show that d[v] = δ(s, v) for every 
v ∈ V when v is added to S.  Suppose u is the first 
vertex added to S for which d[u] > δ(s, u). Let y be the 
first vertex in V – S along a shortest path from s to u, 
and let x be its predecessor:

ss
xx yy

uu

S, just before 
adding u.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 38/64

Introduction to Algorithms November 1, 2004 L14.33© 2001–4 by Charles E. Leiserson

Correctness — Par t III 
(continued)

Since u is the first vertex violating the claimed 
invariant, we have d[x] = δ(s, x).  When x was 
added to S, the edge (x, y) was relaxed, which 
implies that d[y] = δ(s, y) ≤ δ(s, u) < d[u].  But, 
d[u] ≤ d[y] by our choice of u.  Contradiction.

ss
xx yy

uuS



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 39/64

Introduction to Algorithms November 1, 2004 L14.34© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 40/64

Introduction to Algorithms November 1, 2004 L14.35© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra

|V |
times

while Q ∅
do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

≠



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 41/64

Introduction to Algorithms November 1, 2004 L14.36© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra

degree(u)
times

|V |
times

while Q ∅
do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

≠



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 42/64

Introduction to Algorithms November 1, 2004 L14.37© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra

degree(u)
times

|V |
times

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s.

while Q ∅
do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

≠



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 43/64

Introduction to Algorithms November 1, 2004 L14.38© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra

degree(u)
times

|V |
times

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s.

Time = Θ(V·TEXTRACT-MIN + E·TDECREASE-KEY)

Note: Same formula as in the analysis of Prim’s 
minimum spanning tree algorithm.

while Q ∅
do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

≠



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 44/64

Introduction to Algorithms November 1, 2004 L14.39© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra 
(continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 45/64

Introduction to Algorithms November 1, 2004 L14.40© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra 
(continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 46/64

Introduction to Algorithms November 1, 2004 L14.41© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra 
(continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)

binary 
heap O(lg V) O(lg V) O(E lg V)



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 47/64

Introduction to Algorithms November 1, 2004 L14.43© 2001–4 by Charles E. Leiserson

Unweighted graphs

Suppose that w(u, v) = 1 for all (u, v) ∈ E.  
Can Dijkstra’s algorithm be improved?



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 48/64

Introduction to Algorithms November 1, 2004 L14.44© 2001–4 by Charles E. Leiserson

Unweighted graphs

• Use a simple FIFO queue instead of a priority 
queue.

Suppose that w(u, v) = 1 for all (u, v) ∈ E.  
Can Dijkstra’s algorithm be improved?



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 49/64

Introduction to Algorithms November 1, 2004 L14.45© 2001–4 by Charles E. Leiserson

Unweighted graphs

while Q ∅
do u ← DEQUEUE(Q)

for each v ∈ Adj[u]
do if d[v] = ∞

then d[v] ← d[u] + 1
ENQUEUE(Q, v)

• Use a simple FIFO queue instead of a priority 
queue.

Breadth-first search

Suppose that w(u, v) = 1 for all (u, v) ∈ E.  
Can Dijkstra’s algorithm be improved?

≠



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 50/64

Introduction to Algorithms November 1, 2004 L14.46© 2001–4 by Charles E. Leiserson

Unweighted graphs

while Q ≠ ∅
do u ← DEQUEUE(Q)

for each v ∈ Adj[u]
do if d[v] = ∞

then d[v] ← d[u] + 1
ENQUEUE(Q, v)

• Use a simple FIFO queue instead of a priority 
queue.

Analysis: Time = O(V + E).

Breadth-first search

Suppose that w(u, v) = 1 for all (u, v) ∈ E.  
Can Dijkstra’s algorithm be improved?

≠



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 51/64

Introduction to Algorithms November 1, 2004 L14.47© 2001–4 by Charles E. Leiserson

Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 52/64

Introduction to Algorithms November 1, 2004 L14.48© 2001–4 by Charles E. Leiserson

Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a

0

0



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 53/64

Introduction to Algorithms November 1, 2004 L14.49© 2001–4 by Charles E. Leiserson

Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b  d

0

1

1

1  1



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 54/64

Introduction to Algorithms November 1, 2004 L14.50© 2001–4 by Charles E. Leiserson

Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b d  c  e

0

1

1

2 2

1  2  2



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 55/64

Introduction to Algorithms November 1, 2004 L14.51© 2001–4 by Charles E. Leiserson

Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b d c  e

0

1

1

2 2

2  2



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 56/64

Introduction to Algorithms November 1, 2004 L14.52© 2001–4 by Charles E. Leiserson

Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b d c e

0

1

1

2 2

2



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 57/64

Introduction to Algorithms November 1, 2004 L14.53© 2001–4 by Charles E. Leiserson

Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b d c e g  i

0

1

1

2 2

3

3

3  3



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 58/64

Introduction to Algorithms November 1, 2004 L14.54© 2001–4 by Charles E. Leiserson

Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b d c e g i  f

0

1

1

2 2

3

3

4

3  4



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 59/64

Introduction to Algorithms November 1, 2004 L14.55© 2001–4 by Charles E. Leiserson

Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b d c e g i f  h

0

1

1

2 2

3

3

4 4

4  4



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 60/64

Introduction to Algorithms November 1, 2004 L14.56© 2001–4 by Charles E. Leiserson

Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b d c e g i f h

0

1

1

2 2

3

3

4 4

4



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 61/64

Introduction to Algorithms November 1, 2004 L14.57© 2001–4 by Charles E. Leiserson

Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b d c e g i f h

0

1

1

2 2

3

3

4 4



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 62/64

Introduction to Algorithms November 1, 2004 L14.58© 2001–4 by Charles E. Leiserson

Example of breadth-fir st 
search

aa

bb

cc

dd

ee

gg

ii

ff hh

Q:  a  b d c e g i f h

0

1

1

2 2

3

3

4 4



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 63/64

Introduction to Algorithms November 1, 2004 L14.59© 2001–4 by Charles E. Leiserson

Correctness of BFS

Key idea:
The FIFO Q in breadth-first search mimics 
the priority queue Q in Dijkstra.
• Invar iant: v comes after u in Q implies that 

d[v] = d[u] or d[v] = d[u] + 1.

while Q ≠ ∅
do u ← DEQUEUE(Q)

for each v ∈ Adj[u]
do if d[v] = ∞

then d[v] ← d[u] + 1
ENQUEUE(Q, v)



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 64/64

Recap
● Properties of shortest paths
● Dijkstra's Algorithm
● Correctness
● Analysis
● Breadth-First Search


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

