CMP448: Algorithms

Lecture 13: Dijkstra's Algorithm

Mohamed Alaa El-Dien Aly Computer Engineering Department Cairo University Spring 2013

Agenda

- Properties of shortest paths
- Dijkstra's Algorithm
- Correctness
- Analysis
- Breadth-First Search

Acknowledgment

A lot of slides adapted from the slides of Erik Demaine and Charles Leiserson.

Mohamed Aly – CMP448 Spring 2013

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.2

Mohamed Aly – CMP448 Spring 2013

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Example:

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.3

Mohamed Aly – CMP448 Spring 2013 C

Shortest paths

A *shortest path* from *u* to *v* is a path of minimum weight from *u* to *v*. The *shortest- path weight* from *u* to *v* is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.4

Mohamed Aly – CMP448 Spring 2013

Shortest paths

A *shortest path* from *u* to *v* is a path of minimum weight from *u* to *v*. The *shortest- path weight* from *u* to *v* is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from *u* to *v* exists.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.5

Mohamed Aly – CMP448 Spring 2013

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.6

Mohamed Aly – CMP448 Spring 2013

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.7

Mohamed Aly – CMP448 Spring 2013

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \le \delta(u, x) + \delta(x, v)$.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.8

Mohamed Aly – CMP448 Spring 2013

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \le \delta(u, x) + \delta(x, v)$.

Proof. Assume $\delta(u, v) > \delta(u, x) + \delta(x, v)$

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.9

Mohamed Aly – CMP448 Spring 2013

Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.10

Mohamed Aly – CMP448 Spring 2013

Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Example:

The shortest path weight $\delta(u, v)$ in that case is - ∞

 $\ensuremath{\mathbb{C}}$ 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.11

Mohamed Aly – CMP448 Spring 2013

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

If all edge weights w(u, v) are *nonnegative*, all shortest-path weights must exist.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.12

Mohamed Aly – CMP448 Spring 2013

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

If all edge weights w(u, v) are *nonnegative*, all shortest-path weights must exist.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortestpath distances from *s* are known.
- 2. At each step add to *S* the vertex $v \in V S$ whose distance estimate from *s* is minimal.
- 3. Update the distance estimates of vertices adjacent to v.

 $\ensuremath{\mathbb{C}}$ 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.12

Mohamed Aly – CMP448 Spring 2013

Dijkstra's algorithm

 $d[s] \leftarrow 0$ for each $v \in V - \{s\}$ do $d[v] \leftarrow \infty$ $S \leftarrow \emptyset$ $Q \leftarrow V$ $\triangleleft Q$ is a priority queue maintaining V - S

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.13

Mohamed Aly – CMP448 Spring 2013

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \qquad \triangleleft Q is a priority queue maintaining V - S
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
         for each v \in Adj[u]
              do if d[v] > d[u] + w(u, v)
                       then d[v] \leftarrow d[u] + w(u, v)
```

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \qquad \triangleleft Q is a priority queue maintaining V - S
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
        S \leftarrow S \cup \{u\}
        for each v \in Adj[u]
                                                            relaxation
             do if d[v] > d[u] + w(u, v)
                     then d[v] \leftarrow d[u] + w(u, v)
                                                                  step
                    Implicit DECREASE-KEY
```

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.15

Mohamed Aly – CMP448 Spring 2013

Graph with nonnegative edge weights:

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.16

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.17

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.18

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.19

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.20

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.21

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.22

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.23

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.24

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.25

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.26

Mohamed Aly – CMP448 Spring 2013

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.27

Mohamed Aly – CMP448 Spring 2013

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let *v* be the first vertex for which $d[v] < \delta(s, v)$, and let *u* be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then,

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which $d[v] < \delta(s, v)$, and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then, $d[v] < \delta(s, v)$ supposition $\leq \delta(s, u) + \delta(u, v)$ triangle inequality $\leq \delta(s, u) + w(u, v)$ sh. path \leq specific path $\leq d[u] + w(u, v)$ v is first violation

Contradiction. © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

Mohamed Aly – CMP448 Spring 2013

Correctness — Part II

Lemma. Let *u* be *v*'s predecessor on a shortest path from *s* to *v*. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.29

Mohamed Aly – CMP448 Spring 2013

Correctness — Part II

Lemma. Let *u* be *v*'s predecessor on a shortest path from *s* to *v*. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Proof. Observe that $\delta(s, v) = \delta(s, u) + w(u, v)$.

Because u is v's predecessor on the shortest path

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.30

Mohamed Aly – CMP448 Spring 2013

Correctness — Part II

Lemma. Let *u* be *v*'s predecessor on a shortest path from *s* to *v*. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Proof. Observe that $\delta(s, v) = \delta(s, u) + w(u, v)$. Suppose that $d[v] > \delta(s, v)$ before the relaxation. (Otherwise, we're done.) Then, the test d[v] > d[u] + w(u, v) succeeds, because $d[v] > \delta(s, v) = \delta(s, u) + w(u, v) = d[u] + w(u, v)$, and the algorithm sets $d[v] = d[u] + w(u, v) = \delta(s, v)$.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.30

Mohamed Aly – CMP448 Spring 2013

Correctness — Part III

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.31

Mohamed Aly – CMP448 Spring 2013

Correctness — Part III

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] > \delta(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let x be its predecessor:

 \bigcirc 2001–4 by Charles E. Leiserson

Mohamed Aly – CMP448 Spring 2013

Introduction to Algorithms

November 1, 2004 L14.32

Correctness — Part III (continued)

Since *u* is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$. When *x* was added to *S*, the edge (x, y) was relaxed, which implies that $d[y] = \delta(s, y) \le \delta(s, u) < d[u]$. But, $d[u] \le d[y]$ by our choice of *u*. Contradiction.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.33

Mohamed Aly – CMP448 Spring 2013

Analysis of Dijkstra

while $Q \neq \emptyset$ do $u \leftarrow \text{Extract-Min}(Q)$ $S \leftarrow S \cup \{u\}$ for each $v \in Adj[u]$ do if d[v] > d[u] + w(u, v)then $d[v] \leftarrow d[u] + w(u, v)$

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.34

Mohamed Aly – CMP448 Spring 2013

Analysis of Dijkstra

|V| times while $Q \neq \emptyset$ do $u \leftarrow \text{Extract-Min}(Q)$ $S \leftarrow S \cup \{u\}$ for each $v \in Adj[u]$ do if d[v] > d[u] + w(u, v)then $d[v] \leftarrow d[u] + w(u, v)$

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.35

Mohamed Aly – CMP448 Spring 2013

Analysis of Dijkstra

|V| times de

while $Q \neq \emptyset$ do $u \leftarrow \text{Extract-Min}(Q)$ $S \leftarrow S \cup \{u\}$ for each $v \in Adj[u]$ do if d[v] > d[u] + w(u, v)times then $d[v] \leftarrow d[u] + w(u, v)$

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.36

Mohamed Aly – CMP448 Spring 2013

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit DECREASE-KEY's.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.37

Mohamed Aly – CMP448 Spring 2013

Mohamed Aly – CMP448 Spring 2013

Analysis of Dijkstra (continued)

Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$ Total $T_{\text{EXTRACT-MIN}}$ $T_{\text{DECREASE-KEY}}$ Q

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.39

Mohamed Aly – CMP448 Spring 2013

Analysis of Dijkstra (continued)

Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$ $Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}}$ Total array $O(V) \quad O(1) \quad O(V^2)$

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.40

Mohamed Aly – CMP448 Spring 2013

Analysis of Dijkstra (continued)

$\text{Time} = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$			
Q	T _{EXTRACT-MIN}	T _{DECREASE-KEY}	Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	<i>O</i> (lg <i>V</i>)	<i>O</i> (lg <i>V</i>)	$O(E \lg V)$

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.41

Mohamed Aly – CMP448 Spring 2013

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.43

Mohamed Aly – CMP448 Spring 2013

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.44

Mohamed Aly – CMP448 Spring 2013

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

Breadth-first search while $Q \neq \emptyset$ do $u \leftarrow \text{DEQUEUE}(Q)$ for each $v \in Adj[u]$ do if $d[v] = \infty$ then $d[v] \leftarrow d[u] + 1$ ENQUEUE(Q, v)

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.45

Mohamed Aly – CMP448 Spring 2013

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

Breadth-first searchwhile $Q \neq \emptyset$ do $u \leftarrow DEQUEUE(Q)$ for each $v \in Adj[u]$ do if $d[v] = \infty$ then $d[v] \leftarrow d[u] + 1$ ENQUEUE(Q, v)

Analysis: Time = O(V + E).

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.46

Mohamed Aly – CMP448 Spring 2013

Q:

© 2001–4 by Charles E. Leiserson

Mohamed Aly – CMP448 Spring 2013

Introduction to Algorithms

November 1, 2004 L14.47

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.48

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.49

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.50

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.51

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.52

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.53

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.54

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.55

Mohamed Aly – CMP448 Spring 2013

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.56

Mohamed Aly – CMP448 Spring 2013

Q: a b d c e g i f h

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.57

Mohamed Aly – CMP448 Spring 2013

Q: a b d c e g i f h

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.58

Mohamed Aly – CMP448 Spring 2013

Correctness of BFS

while $Q \neq \emptyset$ do $u \leftarrow DEQUEUE(Q)$ for each $v \in Adj[u]$ do if $d[v] = \infty$ then $d[v] \leftarrow d[u] + 1$ ENQUEUE(Q, v)

Key idea:

- The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra.
- Invariant: v comes after u in Q implies that d[v] = d[u] or d[v] = d[u] + 1.

 $\ensuremath{\mathbb{C}}$ 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004 L14.59

Mohamed Aly – CMP448 Spring 2013

Recap

- Properties of shortest paths
- Dijkstra's Algorithm
- Correctness
- Analysis
- Breadth-First Search