
CMP448: Algorithms

Lecture 14: Bellman-Ford Algorithm

Mohamed Alaa El-Dien Aly
Computer Engineering Department

Cairo University
Spring 2013

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 2/62

Agenda

Acknowledgment
A lot of slides adapted from the slides of Erik Demaine and Charles Leiserson.

● Bellman-Ford Algorithm
● DAG Shortest Paths
● Linear Programming and Difference Constraints
● VLSI Layout Compaction

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 3/62

Introduction to Algorithms November 3, 2004 L15.2© 2001–4 by Charles E. Leiserson

Negative-weight cycles
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.
Example:

uu vv

…

< 0

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 4/62

Introduction to Algorithms November 3, 2004 L15.3© 2001–4 by Charles E. Leiserson

Negative-weight cycles
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.
Example:

uu vv

…

< 0

Bellman-Ford algorithm: Finds all shortest-path
lengths from a source s ∈ V to all v ∈ V or
determines that a negative-weight cycle exists.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 5/62

Introduction to Algorithms November 3, 2004 L15.4© 2001–4 by Charles E. Leiserson

Bellman-Ford algor ithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞

for i ← 1 to |V| – 1
do for each edge (u, v) ∈ E

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

for each edge (u, v) ∈ E
do if d[v] > d[u] + w(u, v)

then report that a negative-weight cycle exists

initialization

At the end, d[v] = δ(s, v), if no negative-weight cycles.
Time = O(VE).

relaxation
step

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 6/62

Introduction to Algorithms November 3, 2004 L15.4© 2001–4 by Charles E. Leiserson

Bellman-Ford algor ithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞

for i ← 1 to |V| – 1
do for each edge (u, v) ∈ E

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

for each edge (u, v) ∈ E
do if d[v] > d[u] + w(u, v)

then report that a negative-weight cycle exists

initialization

At the end, d[v] = δ(s, v), if no negative-weight cycles.
Time = O(VE).

relaxation
step

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 7/62

Introduction to Algorithms November 3, 2004 L15.4© 2001–4 by Charles E. Leiserson

Bellman-Ford algor ithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞

for i ← 1 to |V| – 1
do for each edge (u, v) ∈ E

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

for each edge (u, v) ∈ E
do if d[v] > d[u] + w(u, v)

then report that a negative-weight cycle exists

initialization

At the end, d[v] = δ(s, v), if no negative-weight cycles.
Time = O(VE).

relaxation
step

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 8/62

Introduction to Algorithms November 3, 2004 L15.5© 2001–4 by Charles E. Leiserson

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 9/62

Introduction to Algorithms November 3, 2004 L15.6© 2001–4 by Charles E. Leiserson

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3

∞

0 ∞

∞ ∞

Initialization.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 10/62

Introduction to Algorithms November 3, 2004 L15.7© 2001–4 by Charles E. Leiserson

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3

∞

0 ∞

∞ ∞

1

2

3
4

5

7

8

Order of edge relaxation.

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 11/62

Introduction to Algorithms November 3, 2004 L15.8© 2001–4 by Charles E. Leiserson

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3

∞

0 ∞

∞ ∞

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 12/62

Introduction to Algorithms November 3, 2004 L15.9© 2001–4 by Charles E. Leiserson

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3

∞

0 ∞

∞ ∞

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 13/62

Introduction to Algorithms November 3, 2004 L15.10© 2001–4 by Charles E. Leiserson

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3

∞

0 ∞

∞ ∞

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 14/62

Introduction to Algorithms November 3, 2004 L15.11© 2001–4 by Charles E. Leiserson

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0 ∞

∞ ∞

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 15/62

Introduction to Algorithms November 3, 2004 L15.12© 2001–4 by Charles E. Leiserson

4

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0 ∞

∞

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 16/62

Introduction to Algorithms November 3, 2004 L15.13© 2001–4 by Charles E. Leiserson

4

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0 ∞

∞

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 17/62

Introduction to Algorithms November 3, 2004 L15.14© 2001–4 by Charles E. Leiserson

2

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0 ∞

∞

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 18/62

Introduction to Algorithms November 3, 2004 L15.15© 2001–4 by Charles E. Leiserson

2

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0 ∞

∞

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 19/62

Introduction to Algorithms November 3, 2004 L15.16© 2001–4 by Charles E. Leiserson

2

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0 ∞

∞

1

2

3
4

5

7

8

End of pass 1.

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 20/62

Introduction to Algorithms November 3, 2004 L15.17© 2001–4 by Charles E. Leiserson

1

2

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0

∞

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 21/62

Introduction to Algorithms November 3, 2004 L15.18© 2001–4 by Charles E. Leiserson

1

2

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0

∞

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 22/62

Introduction to Algorithms November 3, 2004 L15.19© 2001–4 by Charles E. Leiserson

1

1

2

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 23/62

Introduction to Algorithms November 3, 2004 L15.20© 2001–4 by Charles E. Leiserson

1

1

2

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 24/62

Introduction to Algorithms November 3, 2004 L15.21© 2001–4 by Charles E. Leiserson

1

1

2

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 25/62

Introduction to Algorithms November 3, 2004 L15.22© 2001–4 by Charles E. Leiserson

1

1

2

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 26/62

Introduction to Algorithms November 3, 2004 L15.23© 2001–4 by Charles E. Leiserson

1

1

2

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 27/62

Introduction to Algorithms November 3, 2004 L15.24© 2001–4 by Charles E. Leiserson

−2

1

2

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 28/62

Introduction to Algorithms November 3, 2004 L15.25© 2001–4 by Charles E. Leiserson

−2

1

2

−1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

End of pass 2 (and 3 and 4).

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 29/62

Introduction to Algorithms November 3, 2004 L15.26© 2001–4 by Charles E. Leiserson

Correctness
Theorem. If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = δ(s, v) for all v ∈ V.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 30/62

Introduction to Algorithms November 3, 2004 L15.27© 2001–4 by Charles E. Leiserson

Correctness
Theorem. If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = δ(s, v) for all v ∈ V.
Proof. Let v ∈ V be any vertex, and consider a shortest
path p from s to v with the minimum number of edges.

v1
v1

v2
v2

v3
v3 vk

vk

v0
v0

…
s

v

p:

Since p is a shortest path, we have

δ(s, vi) = δ(s, vi–1) + w(vi–1, vi) .

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 31/62

Introduction to Algorithms November 3, 2004 L15.28© 2001–4 by Charles E. Leiserson

Correctness (continued)

v1
v1

v2
v2

v3
v3 vk

vk

v0
v0

…
s

v

p:

Initially, d[v0] = 0 = δ(s, v0), and d[v0] is unchanged by
subsequent relaxations (because of the lemma from
Lecture 14 that d[v] ≥ δ(s, v)).
• After 1 pass through E, we have d[v1] = δ(s, v1).
• After 2 passes through E, we have d[v2] = δ(s, v2).
⋮

• After k passes through E, we have d[vk] = δ(s, vk).
Since G contains no negative-weight cycles, p is simple.
Longest simple path has ≤ |V| – 1 edges.

d[v] ≥ δ(s,v)

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 32/62

Introduction to Algorithms November 3, 2004 L15.29© 2001–4 by Charles E. Leiserson

Detection of negative-weight
cycles

Corollary. If a value d[v] fails to converge after
|V| – 1 passes, there exists a negative-weight
cycle in G reachable from s.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 33/62

DAG Shortest Paths

Bellman-Ford takes time O(VE). Can we do better on a DAG?
Yes!

How?
We can apply topological sorting on the DAG, and relax every
edge only once.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 34/62

DAG Shortest Paths

Topological-Sort(G)

for v in V
 d[v] = ∞
d[s] = 0

for each vertex u in topologically sorted order
 for each vertex v in Adj[u]
 if d[v] > d[u] + w(u,v)
 d[v] = d[u] + w(u,v)

Topological-Sort(G)

for v in V
 d[v] = ∞
d[s] = 0

for each vertex u in topologically sorted order
 for each vertex v in Adj[u]
 if d[v] > d[u] + w(u,v)
 d[v] = d[u] + w(u,v)

Θ(E+V)

Θ(V)

Θ(E)

Total Time = Θ(E+V)

Proof. Exercise.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 35/62

DAG Shortest Paths

D

A

B

C D

E

-1
2

-3

5

4

3 2

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 36/62

DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Topological Sorting

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 37/62

DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Initialize with B as a source

0∞ ∞ ∞ ∞

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 38/62

DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Process A

0∞ ∞ ∞ ∞

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 39/62

DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Process B

0∞ 2 2 3

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 40/62

DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Process E

0∞ 2 -1 3

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 41/62

DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Process D

0∞ 2 -1 3

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 42/62

DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Process C

0∞ 2 -1 3

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 43/62

Introduction to Algorithms November 3, 2004 L15.30© 2001–4 by Charles E. Leiserson

Linear programming

Let A be an m×n matrix, b be an m-vector, and c
be an n-vector. Find an n-vector x that maximizes
cTx subject to Ax ≤ b, or determine that no such
solution exists.

. ≤ .maximizingm

n

A x ≤ b cT x

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 44/62

Introduction to Algorithms November 3, 2004 L15.31© 2001–4 by Charles E. Leiserson

Linear -programming
algor ithms

Algor ithms for the general problem
• Simplex methods — practical, but worst-case

exponential time.
• Interior-point methods — polynomial time and

competes with simplex.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 45/62

Introduction to Algorithms November 3, 2004 L15.32© 2001–4 by Charles E. Leiserson

Linear -programming
algor ithms

Algor ithms for the general problem
• Simplex methods — practical, but worst-case

exponential time.
• Interior-point methods — polynomial time and

competes with simplex.

Feasibility problem: No optimization criterion.
Just find x such that Ax ≤ b.
• In general, just as hard as ordinary LP.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 46/62

Introduction to Algorithms November 3, 2004 L15.33© 2001–4 by Charles E. Leiserson

Solving a system of difference
constraints

Linear programming where each row of A contains
exactly one 1, one –1, and the rest 0’s.
Example:

x1 – x2 ≤ 3
x2 – x3 ≤ –2
x1 – x3 ≤ 2

xj – xi ≤ wij

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 47/62

Introduction to Algorithms November 3, 2004 L15.34© 2001–4 by Charles E. Leiserson

Solving a system of difference
constraints

Linear programming where each row of A contains
exactly one 1, one –1, and the rest 0’s.
Example:

x1 – x2 ≤ 3
x2 – x3 ≤ –2
x1 – x3 ≤ 2

xj – xi ≤ wij

Solution:
x1 = 3
x2 = 0
x3 = 2

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 48/62

Introduction to Algorithms November 3, 2004 L15.35© 2001–4 by Charles E. Leiserson

Solving a system of difference
constraints

Linear programming where each row of A contains
exactly one 1, one –1, and the rest 0’s.
Example:

x1 – x2 ≤ 3
x2 – x3 ≤ –2
x1 – x3 ≤ 2

xj – xi ≤ wij

Solution:
x1 = 3
x2 = 0
x3 = 2

Constraint graph:

vvjvvixj – xi ≤ wij

wij

(The “A”
matrix has
dimensions
|E | × |V |.)

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 49/62

Introduction to Algorithms November 3, 2004 L15.36© 2001–4 by Charles E. Leiserson

Unsatisfiable constraints

Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 50/62

Introduction to Algorithms November 3, 2004 L15.37© 2001–4 by Charles E. Leiserson

Unsatisfiable constraints

Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.
Proof. Suppose that the negative-weight cycle is
v1 → v2 → ⋯ → vk → v1. Then, we have

x2 – x1 ≤ w12
x3 – x2 ≤ w23

⋮
xk – xk–1 ≤ wk–1, k
x1 – xk ≤ wk1

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 51/62

Introduction to Algorithms November 3, 2004 L15.38© 2001–4 by Charles E. Leiserson

Unsatisfiable constraints

Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.
Proof. Suppose that the negative-weight cycle is
v1 → v2 → ⋯ → vk → v1. Then, we have

x2 – x1 ≤ w12
x3 – x2 ≤ w23

⋮
xk – xk–1 ≤ wk–1, k
x1 – xk ≤ wk1

Therefore, no
values for the xi
can satisfy the
constraints.

0 ≤ weight of cycle
< 0

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 52/62

Introduction to Algorithms November 3, 2004 L15.39© 2001–4 by Charles E. Leiserson

Satisfying the constraints

Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the
constraints are satisfiable.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 53/62

Introduction to Algorithms November 3, 2004 L15.40© 2001–4 by Charles E. Leiserson

Satisfying the constraints

Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the
constraints are satisfiable.
Proof. Add a new vertex s to V with a 0-weight edge
to each vertex vi ∈ V.

v1
v1

v4
v4

v7
v7

v9
v9

v3
v3

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 54/62

Introduction to Algorithms November 3, 2004 L15.41© 2001–4 by Charles E. Leiserson

Satisfying the constraints

Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the
constraints are satisfiable.
Proof. Add a new vertex s to V with a 0-weight edge
to each vertex vi ∈ V.

v1
v1

v4
v4

v7
v7

v9
v9

v3
v3

s

0 Note:
No negative-weight
cycles introduced ⇒
shortest paths exist.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 55/62

Introduction to Algorithms November 3, 2004 L15.42© 2001–4 by Charles E. Leiserson

The triangle inequality gives us δ(s,vj) ≤ δ(s, vi) + wij.
Since xi = δ(s, vi) and xj = δ(s, vj), the constraint xj – xi
≤ wij is satisfied.

Proof (continued)
Claim: The assignment xi = δ(s, vi) solves the constraints.

ss

vj
vj

vi
vi

δ(s, vi)

δ(s, vj) wij

Consider any constraint xj – xi ≤ wij, and consider the
shortest paths from s to vj and vi:

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 56/62

Introduction to Algorithms November 3, 2004 L15.43© 2001–4 by Charles E. Leiserson

Bellman-Ford and linear
programming

Corollary. The Bellman-Ford algorithm can
solve a system of m difference constraints on n
variables in O(mn) time.
Single-source shortest paths is a simple LP
problem.
In fact, Bellman-Ford maximizes x1 + x2 + ⋯ + xn

subject to the constraints xj – xi ≤ wij and xi ≤ 0
(exercise).
Bellman-Ford also minimizes maxi{xi} – mini{xi}
(exercise).

O(n2 + nm) time

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 57/62

Introduction to Algorithms November 3, 2004 L15.43© 2001–4 by Charles E. Leiserson

Bellman-Ford and linear
programming

Corollary. The Bellman-Ford algorithm can
solve a system of m difference constraints on n
variables in O(mn) time.
Single-source shortest paths is a simple LP
problem.
In fact, Bellman-Ford maximizes x1 + x2 + ⋯ + xn

subject to the constraints xj – xi ≤ wij and xi ≤ 0
(exercise).
Bellman-Ford also minimizes maxi{xi} – mini{xi}
(exercise).

O(n2 + nm) time

Proof.
The augmeted constraint graph has n+1 vertices (variables)
and m+n edges. why?
Therefore, Bellman-Ford takes time
 O(VE) = O((n+1)(m+n)) = O(n2 + nm)

Can we make it take time O(mn) instead? Yes!

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 58/62

Bellman-Ford and
Linear Programming

Notice that the first time any edge (s, v
i
) is updated, d[v

i
] is set

to 0 instead of ∞, and it does not increase afterwards. Why?

So we can do away with s altogether, and initialize d[v
i
] = 0

Therefore, we will have n vertices and m edges, and Bellman-Ford
will take time O(mn)

0

s

v
1

v
2

v
3

v
4

v
5

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 59/62

Introduction to Algorithms November 3, 2004 L15.43© 2001–4 by Charles E. Leiserson

Bellman-Ford and linear
programming

Corollary. The Bellman-Ford algorithm can
solve a system of m difference constraints on n
variables in O(mn) time.
Single-source shortest paths is a simple LP
problem.
In fact, Bellman-Ford maximizes x1 + x2 + ⋯ + xn

subject to the constraints xj – xi ≤ wij and xi ≤ 0
(exercise).
Bellman-Ford also minimizes maxi{xi} – mini{xi}
(exercise).

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 60/62

Introduction to Algorithms November 3, 2004 L15.44© 2001–4 by Charles E. Leiserson

Application to VLSI layout
compaction

Integrated
-circuit
features:

Problem: Compact (in one dimension) the
space between the features of a VLSI layout
without bringing any features too close together.

minimum separation λ

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 61/62

Introduction to Algorithms November 3, 2004 L15.45© 2001–4 by Charles E. Leiserson

VLSI layout compaction

1

x1 x2

2

d1

Constraint: x2 – x1 ≥ d1 + λ
Bellman-Ford minimizes maxi{xi} – mini{xi},
which compacts the layout in the x-dimension.

Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 62/62

Recap
● Bellman-Ford Algorithm
● DAG Shortest Paths
● Linear Programming and Difference Constraints
● VLSI Layout Compaction

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

