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Negative-weight cycles
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.
Example:

uu vv

…

< 0
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Negative-weight cycles
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.
Example:

uu vv

…

< 0

Bellman-Ford algorithm: Finds all shortest-path 
lengths from a source s ∈ V to all v ∈ V or 
determines that a negative-weight cycle exists.
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Bellman-Ford algor ithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞

for i ← 1 to |V| – 1
do for each edge (u, v) ∈ E

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

for each edge (u, v) ∈ E
do if d[v] > d[u] + w(u, v)

then report that a negative-weight cycle exists

initialization

At the end, d[v] = δ(s, v), if no negative-weight cycles.  
Time = O(VE).

relaxation 
step
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Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

1
2

–3

2

5

3



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 9/62

Introduction to Algorithms November 3, 2004 L15.6© 2001–4 by Charles E. Leiserson

Example of Bellman-Ford
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Initialization.
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Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford
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Correctness
Theorem. If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford 
algorithm executes, d[v] = δ(s, v) for all v ∈ V. 
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Correctness
Theorem. If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford 
algorithm executes, d[v] = δ(s, v) for all v ∈ V. 
Proof.  Let v ∈ V be any vertex, and consider a shortest 
path p from s to v with the minimum number of edges.

v1
v1

v2
v2

v3
v3 vk

vk

v0
v0

…
s

v

p:

Since p is a shortest path, we have

δ(s, vi) = δ(s, vi–1) + w(vi–1, vi) .
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Correctness (continued)

v1
v1

v2
v2

v3
v3 vk

vk

v0
v0

…
s

v

p:

Initially, d[v0] = 0 = δ(s, v0), and d[v0] is unchanged by 
subsequent relaxations (because of the lemma from 
Lecture 14 that d[v] ≥ δ(s, v)).
• After 1 pass through E, we have d[v1] = δ(s, v1).
• After 2 passes through E, we have d[v2] = δ(s, v2).
⋮

• After k passes through E, we have d[vk] = δ(s, vk).
Since G contains no negative-weight cycles, p is simple.  
Longest simple path has ≤ |V| – 1 edges.

d[v] ≥ δ(s,v)
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Detection of negative-weight 
cycles

Corollary. If a value d[v] fails to converge after 
|V| – 1 passes, there exists a negative-weight 
cycle in G reachable from s.
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DAG Shortest Paths

Bellman-Ford takes time O(VE). Can we do better on a DAG?
Yes!

How?
We can apply topological sorting on the DAG, and relax every
edge only once.
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DAG Shortest Paths

Topological-Sort(G)

for v in V
    d[v] = ∞
d[s] = 0

for each vertex u in topologically sorted order
        for each vertex v in Adj[u]
              if d[v] > d[u] + w(u,v)
                   d[v] = d[u] + w(u,v)

Topological-Sort(G)

for v in V
    d[v] = ∞
d[s] = 0

for each vertex u in topologically sorted order
        for each vertex v in Adj[u]
              if d[v] > d[u] + w(u,v)
                   d[v] = d[u] + w(u,v)

Θ(E+V)

Θ(V)

Θ(E)

Total Time = Θ(E+V)

Proof. Exercise.
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DAG Shortest Paths

D

A

B

C D

E

-1
2

-3

5

4

3 2
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DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Topological Sorting
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DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Initialize with B as a source

0∞ ∞ ∞ ∞
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DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Process A

0∞ ∞ ∞ ∞
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DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Process B

0∞ 2 2 3
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DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Process E

0∞ 2 -1 3



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 41/62

DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Process D

0∞ 2 -1 3
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DAG Shortest Paths

A B CDE

-1

2

-3 5

4

3

2

Process C

0∞ 2 -1 3



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 43/62

Introduction to Algorithms November 3, 2004 L15.30© 2001–4 by Charles E. Leiserson

Linear  programming

Let A be an m×n matrix, b be an m-vector, and c
be an n-vector.  Find an n-vector x that maximizes 
cTx subject to Ax ≤ b, or determine that no such 
solution exists.

. ≤ .maximizingm

n

A x ≤ b cT x



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 44/62

Introduction to Algorithms November 3, 2004 L15.31© 2001–4 by Charles E. Leiserson

Linear -programming 
algor ithms

Algor ithms for  the general problem
• Simplex methods — practical, but worst-case 

exponential time.
• Interior-point methods — polynomial time and 

competes with simplex.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 45/62

Introduction to Algorithms November 3, 2004 L15.32© 2001–4 by Charles E. Leiserson

Linear -programming 
algor ithms

Algor ithms for  the general problem
• Simplex methods — practical, but worst-case 

exponential time.
• Interior-point methods — polynomial time and 

competes with simplex.

Feasibility problem: No optimization criterion.  
Just find x such that Ax ≤ b.
• In general, just as hard as ordinary LP.



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 46/62

Introduction to Algorithms November 3, 2004 L15.33© 2001–4 by Charles E. Leiserson

Solving a system of difference 
constraints

Linear programming where each row of A contains 
exactly one 1, one –1, and the rest 0’s. 
Example:

x1 – x2 ≤ 3
x2 – x3 ≤ –2
x1 – x3 ≤ 2

xj – xi ≤ wij
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Solving a system of difference 
constraints

Linear programming where each row of A contains 
exactly one 1, one –1, and the rest 0’s. 
Example:

x1 – x2 ≤ 3
x2 – x3 ≤ –2
x1 – x3 ≤ 2

xj – xi ≤ wij

Solution:
x1 = 3
x2 = 0
x3 = 2
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Solving a system of difference 
constraints

Linear programming where each row of A contains 
exactly one 1, one –1, and the rest 0’s. 
Example:

x1 – x2 ≤ 3
x2 – x3 ≤ –2
x1 – x3 ≤ 2

xj – xi ≤ wij

Solution:
x1 = 3
x2 = 0
x3 = 2

Constraint graph:

vvjvvixj – xi ≤ wij

wij

(The “A”
matrix has 
dimensions
|E | × |V |.)
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Unsatisfiable constraints

Theorem. If the constraint graph contains 
a negative-weight cycle, then the system of 
differences is unsatisfiable.
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Unsatisfiable constraints

Theorem. If the constraint graph contains 
a negative-weight cycle, then the system of 
differences is unsatisfiable.
Proof. Suppose that the negative-weight cycle is 
v1 → v2 → ⋯ → vk → v1.  Then, we have

x2 – x1 ≤ w12
x3 – x2 ≤ w23

⋮
xk – xk–1 ≤ wk–1, k
x1 – xk ≤ wk1
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Unsatisfiable constraints

Theorem. If the constraint graph contains 
a negative-weight cycle, then the system of 
differences is unsatisfiable.
Proof. Suppose that the negative-weight cycle is 
v1 → v2 → ⋯ → vk → v1.  Then, we have

x2 – x1 ≤ w12
x3 – x2 ≤ w23

⋮
xk – xk–1 ≤ wk–1, k
x1 – xk ≤ wk1

Therefore, no 
values for the xi
can satisfy the 
constraints.

0 ≤ weight of cycle
< 0
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Satisfying the constraints

Theorem. Suppose no negative-weight cycle 
exists in the constraint graph.  Then, the 
constraints are satisfiable.
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Satisfying the constraints

Theorem. Suppose no negative-weight cycle 
exists in the constraint graph.  Then, the 
constraints are satisfiable.
Proof. Add a new vertex s to V with a 0-weight edge 
to each vertex vi ∈ V.

v1
v1

v4
v4

v7
v7

v9
v9

v3
v3
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Satisfying the constraints

Theorem. Suppose no negative-weight cycle 
exists in the constraint graph.  Then, the 
constraints are satisfiable.
Proof. Add a new vertex s to V with a 0-weight edge 
to each vertex vi ∈ V.

v1
v1

v4
v4

v7
v7

v9
v9

v3
v3

s

0 Note:
No negative-weight 
cycles introduced ⇒
shortest paths exist.
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The triangle inequality gives us δ(s,vj) ≤ δ(s, vi) + wij.  
Since xi = δ(s, vi) and xj = δ(s, vj), the constraint xj – xi
≤ wij is satisfied.

Proof (continued)
Claim: The assignment xi = δ(s, vi) solves the constraints.

ss

vj
vj

vi
vi

δ(s, vi)

δ(s, vj) wij

Consider any constraint xj – xi ≤ wij, and consider the 
shortest paths from s to vj and vi:



Mohamed Aly – CMP448 Spring 2013 Computer Engineering, Cairo University 56/62

Introduction to Algorithms November 3, 2004 L15.43© 2001–4 by Charles E. Leiserson

Bellman-Ford and linear  
programming

Corollary. The Bellman-Ford algorithm can 
solve a system of m difference constraints on n
variables in O(mn) time.  
Single-source shortest paths is a simple LP 
problem.
In fact, Bellman-Ford maximizes x1 + x2 + ⋯ + xn

subject to the constraints xj – xi ≤ wij and xi ≤ 0
(exercise).
Bellman-Ford also minimizes maxi{xi} – mini{xi}
(exercise).

O(n2 + nm) time
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Bellman-Ford and linear  
programming

Corollary. The Bellman-Ford algorithm can 
solve a system of m difference constraints on n
variables in O(mn) time.  
Single-source shortest paths is a simple LP 
problem.
In fact, Bellman-Ford maximizes x1 + x2 + ⋯ + xn

subject to the constraints xj – xi ≤ wij and xi ≤ 0
(exercise).
Bellman-Ford also minimizes maxi{xi} – mini{xi}
(exercise).

O(n2 + nm) time

Proof.
The augmeted constraint graph has n+1 vertices (variables) 
and m+n edges. why?
Therefore, Bellman-Ford takes time 
  O(VE) = O((n+1)(m+n)) = O(n2 + nm)

Can we make it take time O(mn) instead? Yes!
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Bellman-Ford and 
Linear Programming

Notice that the first time any edge (s, v
i
) is updated, d[v

i
] is set

to 0 instead of ∞, and it does not increase afterwards. Why? 

So we can do away with s altogether, and initialize d[v
i
] = 0

Therefore, we will have n vertices and m edges, and Bellman-Ford
will take time O(mn)

0

s

v
1

v
2

v
3

v
4

v
5
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Bellman-Ford and linear  
programming

Corollary. The Bellman-Ford algorithm can 
solve a system of m difference constraints on n
variables in O(mn) time.  
Single-source shortest paths is a simple LP 
problem.
In fact, Bellman-Ford maximizes x1 + x2 + ⋯ + xn

subject to the constraints xj – xi ≤ wij and xi ≤ 0
(exercise).
Bellman-Ford also minimizes maxi{xi} – mini{xi}
(exercise).
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Application to VLSI layout 
compaction

Integrated
-circuit 
features:

Problem: Compact (in one dimension) the 
space between the features of a VLSI layout 
without bringing any features too close together.

minimum separation λ
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VLSI layout compaction

1

x1 x2

2

d1

Constraint: x2 – x1 ≥ d1 + λ
Bellman-Ford minimizes maxi{xi} – mini{xi}, 
which compacts the layout in the x-dimension.
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Recap
● Bellman-Ford Algorithm
● DAG Shortest Paths
● Linear Programming and Difference Constraints
● VLSI Layout Compaction


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

