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Agenda
● Spelling correction
● Noisy Channel Model

– Language Model
– Error Model

Acknowledgment:
Most slides adapted from Chris Manning and Dan Jurafsky's NLP class on Coursera.

http://www.coursera.org/
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Spelling Correction and 
the Noisy Channel

The Spelling 
Correction Task
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Applications for spelling correction

Web search

PhonesWord processing
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Spelling Tasks

• Spelling Error Detection
• Spelling Error Correction:

– Autocorrect   
● htethe

– Suggest a correction
– Suggestion lists
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Types of spelling errors

• Non-word Errors
– graffe giraffe

• Real-word Errors
– Typographical errors

● three there
– Cognitive Errors (homophones)

● piecepeace, 
● too  two
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Non-word spelling errors

• Non-word spelling error detection:
– Any word not in a dictionary is an error
– The larger the dictionary the better

• Non-word spelling error correction:
– Generate candidates: real words that are similar to error
– Choose the one which is best:

● Shortest weighted edit distance
● Highest noisy channel probability

7
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Real word spelling errors

• For each word w, generate candidate set:
– Find candidate words with similar pronunciations
– Find candidate words with similar spelling
– Include w in candidate set

• Choose best candidate
– Noisy Channel 
– Classifier

8
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Spelling Correction and 
the Noisy Channel

The Noisy Channel 
Model of Spelling
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Noisy Channel Intuition
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Noisy Channel Intuition
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Noisy Channel

• We see an observation x of a misspelled word
• Find the correct word w 

ŵ = argmax
w∈ V

P(w | x)

= argmax
w∈ V

P(x |w)P(w)

P(x)

= argmax
w∈ V

P(x |w)P(w)

Language Model
Term

Channel/Error Modeling
Term
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History: Noisy channel for spelling proposed 
around 1990

• IBM
– Mays, Eric, Fred J. Damerau and Robert L. Mercer. 1991. Context 

based spelling correction. Information Processing and 
Management, 23(5), 517–522

• AT&T Bell Labs
– Kernighan, Mark D., Kenneth W. Church, and William A. Gale. 1990. 

A spelling correction program based on a noisy channel model. 
Proceedings of COLING 1990, 205-210
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Non-word spelling error example

acress
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Candidate generation

• Words with similar spelling
– Small edit distance to error

• Words with similar pronunciation
– Small edit distance of pronunciation to error
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Damerau-Levenshtein edit distance

• Minimal edit distance between two strings, where edits are:
– Insertion
– Deletion
– Substitution
– Transposition of two adjacent letters
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Words within distance 1 of acress

Error Candidate 
Correction

Correct 
Letter

Error 
Letter

Type

acress actress t - deletion

acress cress - a insertion

acress caress ca ac transposition

acress access c r substitution

acress across o e substitution

acress acres - s insertion

acress acres - s insertion
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Candidate generation

• 80% of errors are within edit distance 1
• Almost all errors within edit distance 2

• Also allow insertion of space or hyphen
– thisidea   this idea
– inlaw  in-law
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Language Model

• Use any of the language modeling algorithms we’ve learned
• Unigram, bigram, trigram
• Web-scale spelling correction

– Stupid backoff

P (w)
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Unigram Prior probability

word Frequency of word P(word)

actress 9,321 .0000230573

cress 220 .0000005442

caress 686 .0000016969

access 37,038 .0000916207

across 120,844 .0002989314

acres 12,874 .0000318463

Counts from 404,253,213 words in Corpus of Contemporary American English (COCA)
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Channel model probability

• Error model probability, Edit probability
• Kernighan, Church, Gale  1990

• Look at letter errors:
– Misspelled word x = [x1, x2, x3… xm]

– Correct word w = [w1, w2, w3,…, wn]

• P(x|w) = probability of the edit 
– (deletion/insertion/substitution/transposition)

P (x |w)
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Computing error probability: confusion matrix

del[x,y]:    count(xy typed as x)

ins[x,y]:    count(x typed as xy)

sub[x,y]:    count(x typed as y)

trans[x,y]:  count(xy typed as yx)

Insertion and deletion conditioned on previous character
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Confusion matrix for spelling errors
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Generating the confusion matrix

• Peter Norvig’s list of errors
• Peter Norvig’s list of counts of single-edit errors

http://norvig.com/ngrams/spell-errors.txt
http://norvig.com/ngrams/spell-errors.txt
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Channel model Kernighan, Church, Gale 1990
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Channel model for acress

Candidate 
Correction

Correct 
Letter

Error 
Letter

x|w P(x|word)

actress t - c|ct .000117

cress - a a|# .00000144

caress ca ac ac|ca .00000164

access c r r|c .000000209

across o e e|o .0000093

acres - s es|e .0000321

acres - s ss|s .0000342
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Noisy channel probability for acress

Candidate 
Correction

Correct 
Letter

Error 
Letter

x|w P(x|word) P(word) 10-9 *P(x|w)P(w)

actress t - c|ct .000117 .0000231 2.7

cress - a a|# .00000144 .000000544 .00078

caress ca ac ac|ca .00000164 .00000170 .0028

access c r r|c .000000209 .0000916 .019

across o e e|o .0000093 .000299 2.8

acres - s es|e .0000321 .0000318 1.0

acres - s ss|s .0000342 .0000318 1.0
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Noisy channel probability for acress

Candidate 
Correction

Correct 
Letter

Error 
Letter

x|w P(x|word) P(word) 10-9 *P(x|w)P(w)

actress t - c|ct .000117 .0000231 2.7

cress - a a|# .00000144 .000000544 .00078

caress ca ac ac|ca .00000164 .00000170 .0028

access c r r|c .000000209 .0000916 .019

across o e e|o .0000093 .000299 2.8

acres - s es|e .0000321 .0000318 1.0

acres - s ss|s .0000342 .0000318 1.0
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Using a bigram language model

• “a stellar and versatile acress whose combination 
of sass and glamour…”

• Counts from the Corpus of Contemporary American English with add-1 
smoothing

• P(actress|versatile)=.000021 P(whose|actress) = .0010

• P(across|versatile) =.000021 P(whose|across) = .000006

• P(“versatile actress whose”) = .000021*.0010 = 210 x10-10

• P(“versatile across whose”)  = .000021*.000006 = 1 x10-10
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Using a bigram language model

• “a stellar and versatile acress whose combination 
of sass and glamour…”

• Counts from the Corpus of Contemporary American English with add-1 
smoothing

• P(actress|versatile)=.000021 P(whose|actress) = .0010

• P(across|versatile) =.000021 P(whose|across) = .000006

• P(“versatile actress whose”) = .000021*.0010 = 210 x10-10

• P(“versatile across whose”)  = .000021*.000006 = 1 x10-10
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Evaluation

• Some spelling error test sets
– Wikipedia’s list of common English misspelling
– Aspell filtered version of that list
– Birkbeck spelling error corpus
– Peter Norvig’s list of errors (includes Wikipedia and Birkbeck, for training or testi

ng)

http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
http://aspell.net/test/
http://www.ota.ox.ac.uk/headers/0643.xml
http://norvig.com/ngrams/spell-errors.txt
http://norvig.com/ngrams/spell-errors.txt
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Spelling Correction and 
the Noisy Channel

Real-Word Spelling 
Correction
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Real-word spelling errors

• …leaving in about fifteen minuets to go to her house.

• The design an construction of the system…

• Can they lave him my messages?

• The study was conducted mainly be John Black.

• 25-40% of spelling errors are real words     Kukich 1992
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Solving real-word spelling errors

• For each word in sentence
– Generate candidate set

● the word itself 
● all single-letter edits that are English words
● words that are homophones

• Choose best candidates
● Noisy channel model
● Task-specific classifier
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Noisy channel for real-word spell correction

• Given a sentence w1,w2,w3,…,wn

• Generate a set of candidates for each word wi

– Candidate(w1) = {w1, w’1 , w’’1 , w’’’1 ,…}

– Candidate(w2) = {w2, w’2 , w’’2 , w’’’2 ,…}

– Candidate(wn) = {wn, w’n , w’’n , w’’’n ,…}

• Choose the sequence W that maximizes P(W)
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Noisy channel for real-word spell correction

t w o o f t h e w

to t h r e w

on

thawofftao

thetoo

oftwo thaw

. . .



Dan Jurafsky

Mohamed Aly – CMP462 Spring 2013 Computer Engineering, Cairo University 37/50

Noisy channel for real-word spell correction

t w o o f t h e w

to t h r e w

on

thawofftao

thetoo

oftwo thaw

. . .
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Simplification: One error per sentence

• Out of all possible sentences with one word replaced
– w1, w’’2,w3,w4       two off thew     
– w1,w2,w’3,w4             two of the
– w’’’1,w2,w3,w4          too of thew 
– …

• Choose the sequence W that maximizes P(W)
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Where to get the probabilities

• Language model
– Unigram
– Bigram
– Etc

• Channel model
– Same as for non-word spelling correction
– Plus need probability for no error, P(w|w)
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Probability of no error

• What is the channel probability for a correctly typed word?
• P(“the”|“the”)

• Obviously this depends on the application
– .90 (1 error in 10 words)
– .95 (1 error in 20 words)
– .99 (1 error in 100 words)
–  .995 (1 error in 200 words)
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Peter Norvig’s “thew” example

x w x|w P(x|w) P(w) 109 P(x|w)P(w)

thew the ew|e 0.000007 0.02 144

thew thew 0.95 0.00000009 90

thew thaw e|a 0.001 0.0000007 0.7

thew threw h|hr 0.000008 0.000004 0.03

thew thwe ew|we 0.000003 0.00000004 0.0001
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Spelling Correction and 
the Noisy Channel

State-of-the-art 
Systems
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HCI issues in spelling

• If very confident in correction
– Autocorrect

• Less confident
– Give the best correction

• Less confident
– Give a correction list

• Unconfident
– Just flag as an error
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State of the art noisy channel

• We never just multiply the prior and the error model
• Independence assumptions probabilities not commensurate
• Instead: Weigh them

• Learn λ from a development test set

ŵ = argmax
w∈ V

P(x |w)P(w)λ
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Phonetic error model

• Use pronunciation
• Metaphone, used in GNU aspell 

– Convert misspelling to metaphone pronunciation
● “Drop duplicate adjacent letters, except for C.”
● “If the word begins with 'KN', 'GN', 'PN', 'AE', 'WR', drop the first letter.”
● “Drop 'B' if after 'M' and if it is at the end of the word”
● …

– Find words whose pronunciation is 1-2 edit distance from misspelling’s
– Score result list 

● Weighted edit distance of candidate to misspelling
● Edit distance of candidate pronunciation to misspelling pronunciation
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Improvements to channel model

• Allow richer edits (context)     (Brill and Moore 2000)
– entant
– phf
– leal

• Incorporate pronunciation into channel (Toutanova and Moore 2002)
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Channel model

• Factors that could influence p(misspelling|word)
– The source letter
– The target letter
– Surrounding letters
– The position in the word
– Nearby keys on the keyboard
– Homology on the keyboard
– Pronunciations
– Likely morpheme transformations
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Nearby keys
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Classifier-based methods 
for real-word spelling correction

• Instead of just channel model and language model
• Use many features in a classifier (e.g. MaxEnt classifiers).
• Build a classifier for a specific pair like:
      whether/weather

● “cloudy” within +- 10 words
● ___ to VERB
● ___ or not
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Recap

● Spelling correction
● Noisy Channel Model

– Language Model
– Error Model
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