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Agenda
e Generative Vs Discriminative Models
* Features
 MaxEnt Models
* Training

e Smoothing

Acknowledgment:
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Chris Manning

Introduction

* So far we’ve looked at “generative models”
— Language models, Naive Bayes

* But there is now much use of conditional or discriminative probabilistic
models in NLP, Speech, IR (and ML generally)

°* Because:
— They give high accuracy performance
— They make it easy to incorporate lots of linguistically important features

— They allow automatic building of language independent, retargetable NLP
modules
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Chris Manning

Joint vs. Conditional Models

* We have some data {(d, c)} of paired observations d and
hidden classes c.

* Joint (generative) models place probabilities over both
observed data and the hidden stuff (generate the
observed data from hidden stuff):

— All the classic StatNLP models:

* n-gram models, Naive Bayes classifiers, hidden Markov
models, probabilistic context-free grammars, IBM machine
translation alignment models
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Chris Manning

Joint vs. Conditional Models

* Discriminative (conditional) models take the data as
given, and put a probability over hidden structure

given the data:

* Logistic regression, conditional loglinear or maximum
entropy models, conditional random fields

* Also, SVMs, (averaged) perceptron, etc. are
discriminative classifiers (but not directly
probabilistic)
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Chris Manning

Bayes Net/Graphical Models

* Bayes net diagrams draw circles for random variables, and lines for direct

dependencies
* Some variables are observed; some are hidden
* Each node is a little classifier (conditional probability table) based on incoming arcs

0
Y

l
@) @ @

Naive Bayes Logistic Regression

Generative Discriminative
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Chris Manning

Conditional vs. Joint Likelihood

* Ajoint model gives probabilities P(d,c) and tries to maximize this joint
likelihood.

— It turns out to be trivial to choose weights: just relative frequencies.

* A conditional model gives probabilities P(c|d). It takes the data as given
and models only the conditional probability of the class.
— We seek to maximize conditional likelihood.
— Harder to do (as we’ll see...)
— More closely related to classification error.
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Chris Manning

Conditional models work well:
Word Sense Disambiguation

Training Set * Even with exactly the same
Objective Accuracy features., .changln{.g from joint
to conditional estimation
Joint Like. 86.8 increases performance
Cond. Like. 98.5 * That s, we use the same
smoothing, and the same
Tost Sot word-class features, we just
change the numbers
Objective Accuracy ( paramete rs)
Joint Like. 73.6
Cond. Like. 76.1

(Klein and Manning 2002, using Senseval-1 Data)
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Chris Manning

Features

* Inthese slides and most maxent work: features f are elementary pieces
of evidence that link aspects of what we observe d with a category c

that we want to predict
* A feature is a function with a bounded real value: /- CxD — R
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Chris Manning

Example features

- f.(c, d) = [c = LOCATION Ow_ = “in” OisCapitalized(w)]
- f(c, d) =[c = LOCATION OhasAccentedLatinChar(w)]
— f«(c, d) =[c=DRUG Oends(w, “c”)]

in Arcadia in Québec taking Zantac saw Sue

* Models will assign to each feature a weight:
— A positive weight votes that this configuration is likely correct
— A negative weight votes that this configuration is likely incorrect

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University

12/57



Chris Manning

Feature Expectations

*  We will crucially make use of two expectations
* actual or predicted counts of a feature firing:

— Empirical count (expectation) of a feature:

empiricalE(fi>zz(c,d)€0bserved(c,D) fi(c’d>

— Model expectation of a feature:

E<fi):Z<C,d)€0bS€FV€d<C,D) P(C’ d>fi(c’ d>
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Chris Manning

Features

* In NLP uses, usually a feature specifies

1) an indicator function — a yes/no boolean matching function — of
properties of the input and

2) a particular class

fle, d)=[®(d) Dc=c)

— Each feature picks out a data subset and suggests a
label for it
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Chris Manning

Feature-Based Models

* The decision about a data point is based only on the features

active at that point.

Data

BUSINESS: Stocks hit
a yearly low ...

Data

... to restructure
bank:MONEY debt.

Data

DT JJ NN ...
The previous fall ...

Label: BUSINESS

Features

{..., stocks, hit, a,
yearly, low, ...}

Text Categorization
e.g. f = [“stocks” occur and

Label="BUSINESS”]
Mohamed Aly — CMP462 Spring 2013

Label: MONEY

Features

{..., w-1=restructure,
wtl=debt, L=12, ...}

Label: NN

Features
{w=fall, r =JJ
w_ =previous}

Word-Sense
Disambiguation

Computer Engineering, Cairo University
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Chris Manning

Example: Text Categorization

(Zhang and Oles 2001)

* Features are presence of each word in a document and the document class
(they do feature selection to use reliable indicator words)

* Tests on classic Reuters data set (and others)
— Naive Bayes: 77.0% F1
— Linear regression: 86.0%
— Logistic regression: 86.4%
— Support vector machine: 86.5%

* Paper emphasizes the importance of regularization (smoothing) for
successful use of discriminative methods (not used in much early NLP/IR
work)
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Chris Manning

Other Maxent Classifier Examples

* You can use a maxent classifier whenever you want to assign data
points to one of a number of classes:

— Sentence boundary detection (mikheev 2000)

* |s a period end of sentence or abbreviation?
— Sentiment analysis (Pang and Lee 2002)

* Word unigrams, bigrams, POS counts, ...
— PP attachment (rRatnaparkhi 1998)

* Attach to verb or noun? Features of head noun, preposition,
etc.

— Parsing decisions in general (Ratnaparkhi 1997; Johnson et al. 1999, etc.)

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University 17/57



2 fundion
E mm:

s“"iﬁi‘]'if.is"b“.s ﬁ
pﬁgg‘gmmalgl ;y
u"eslmnmud ‘ ;;"mﬂ"ﬂﬂm

probetilisfie _ sense dlsﬂuurse

71 I Justg.i‘“{ﬂﬂ

Ied] Sen :
- nfues =5-;mturmat|un”°“
’ME ap;hf;f: s% arsn - rﬁHllEmnd

E e 5 mm
Ly ] manhme
waSiliecr EDMEANNE o

(isance —-',mm l
it & 5 et =3-sinjle < v

i 00N

o PRESEELEN e 22 AN

WORLS: -
i e

COPDUS bt mincd

=(alage asusten's!

semenics t
regular "umhe mpﬂg&:ﬁ"
= ﬂiVEﬂ dlalugue= Using §
m Iexmalcp e
u».rf mudels=n=aﬂ’n”“‘
: nhsewallunm

g GO

Mohamed Aly — CMP462 Spring 2013

Feature-based Linear
Classifiers

How to put features into a
classifier
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Chris Manning

Feature-Based Linear Classifiers

f,(c. d) =[c = LOCATION Ow_ = “in” OisCapitalized(w)]
f(c, d) = [c = LOCATION [OhasAccentedLatinChar(w)]
* Linear classifiers at classification time: s, ) = [c = DRUG Oends(w, “c”)]

- Linear function from feature sets {/;} to classes {c}.

- Assign a weight A to each feature f.

— We consider each class for an observed datum d
- For a pair (¢,d), features vote with their weights:

 vote(c) = 2A.f(c,d)

0.3
. ] 1.8( - . ,
in Québec n Québec in Québec

- Choose the class ¢ which maximizes >Af(c,d)

PERSON: O
LOCATION: 1.2
DRUG: 0.3

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University 19/57




Chris Manning

Feature-Based Linear Classifiers

There are many ways to chose weights for features

— Perceptron: find a currently misclassified example, and nudge
weights in the direction of its correct classification

— Margin-based methods (Support Vector Machines)

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University
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Chris Manning

Feature-Based Linear Classifiers

* Exponential (log-linear, maxent, logistic, Gibbs) models:
— Make a probabilistic model from the linear combination 2A. f(c,d)

CXP(ZZ- }\ifi(c’ d )) +<— Makes votes positive

Pleld,\N)=
( | ) Zc’ exp(zi kifi(cr’ d)) “— Normalizes votes
. P( lin Québec) = e'8e06/(e'8e706 + 03 + %) = 0.586
. P( lin Québec) = €°3 [(e'8e06 + 03 + g0) = 0.238
. P( lin Québec) = g0 /(e1.86—0.6 + 03 + e0) =0.176

- The weights are the parameters of the probability model,
combined via a “soft max” function
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Chris Manning

Feature-Based Linear Classifiers

* Exponential (log-linear, maxent, logistic, Gibbs) models:
— Given this model form, we will choose parameters {A,.} that
maximize the conditional likelihood of the data according to
this model.

— We construct not only classifications, but probability
distributions over classifications.

* There are other (good!) ways of discriminating classes — SVMs,
boosting, even perceptrons — but these methods are not as trivial
to interpret as distributions over classes.

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University 22/57



Chris Manning

Aside: logistic regression

* Maxent models in NLP are essentially the same as multiclass
logistic regression models in statistics (or machine learning)

— If you haven’t seen these before, don’t worry, this presentation is self-
contained!

— If you have seen these before you might think about:

* The parameterization is slightly different in a way that is

advantageous for NLP-style models with tons of sparse features (but
statistically inelegant)

* The key role of feature functions in NLP and in this presentation

— The features are more general, with falso being a function of the class —
when might this be useful?
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Chris Manning

Quizz Question

* Assuming exactly the same set up (3 class decision: LOCATION, PERSON, or
DRUG; 3 features as before, maxent), what are:

- P( | by Goéric) =
- P( | by Goéric) =
- P | by Goéric) =

- 1.8 fl(c, d) =[c = LOCATION Ow_ = “in” OisCapitalized(w)]
- -0.6 f2(c, d) =[c =LOCATION OhasAccentedLatinChar(w)]
- 03 f3(c, d)=[c=DRUG Oends(w, “c”)]
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Chris Manning

Building a Maxent Model

* We define features (indicator functions) over data points

— Features represent sets of data points which are distinctive enough to deserve
model parameters.

n

* Words, but also “word contains number”, “word ends with ing”, etc.

* We will simply encode each ® feature as a unique String
— A datum will give rise to a set of Strings: the active O© features
— Each feature f(c, d) = [D(d) Oc = c]_] gets a real number weight

e We concentrate on @ features but the math uses i indices offl.

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University 26/57



Chris Manning

Building a Maxent Model

* Features are often added during model development to target

errors i.e. to get rid of training errors
— Often, the easiest thing to think of are features that mark bad combinations

* Then, for any given feature weights, we want to be able to calculate:

— Data conditional likelihood
— Derivative of the likelihood wrt each feature weight
* Uses expectations of each feature according to the model

* We can then find the optimum feature weights (discussed later).

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University 27/57
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Chris Manning

Exponential Model Likelihood

* Maximum (Conditional) Likelihood Models :

— Given a model form, choose values of parameters to maximize the (conditional)
likelihood of the data.

expz ) f(c,d)
log P(C|D,})= log P(c|d,)= log |
cd; (cd(C.D) z GXPZ 1.fi(c',d)
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Chris Manning

The Likelihood Value

* The (log) conditional likelihood of iid data (C,D) according to maxent
model is a function of the data and the parameters A:

log P(C|D,\)=log H<c,d>e<c,m P(c|d, 7“>=Z<c,d>e(c,m log P(c|d, )

* If there aren’t many values of ¢, it’s easy to calculate:

exp( X, 1 fi(e.d))
Y exp(X, e d))

log Pc|d, k):Z(C’d)E(C’D) log

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University 35/57



Chris Manning

The Likelihood Value
* We can separate this into two components:
log Pc|d,\)= z(c’d)e(c’mlogexp(zl_Xifl.(c,d))—

Z(c,d)e(C,D) lOg Zc’ eXp(Z,- fi(c ” d))

log P(c|d,N)=N(\)—M(\)

* The derivative is the difference between the derivatives of each
component

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University 36/57



Chris Manning

8—[2 M S(c d)]

O\
(c,d)e(C,D) file,d)

Derivative of the numerator is: the empirical count(f, c)

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University 37/57
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The Derivative ll: Denominator
X, e X, e d)|| [ Zws e )
> oxp| X fler . d))

2.oxp( 2 h S e d)|[ file d)
> exp[ X, S e d))

exp| D A, filc' d)
:Z<c,d> Z ZC,,GPEP(Z,. k,.f,.(c”,)d)

:Z(C 5 Zc'P<C’|d’7‘)fi(C,’d) predicted count(f, A)

:Z<c,d>

fl.(c',d)
|
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Chris Manning

The Derivative Il

8(2\ log P(C|D,\)=actual count( f,, C)—predicted count( £, \)

* The optimum parameters are the ones for which each feature’s
predicted expectation equals its empirical expectation. The optimum
distribution is:

— Always unique (but parameters may not be unique) as it's convex
— Always exists (if feature counts are from actual data).

* These models are also called maximum entropy models because we
find the model having maximum entropy and satisfying the

constraints: .
E(f)=E,(f)V )
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Chris Manning

Finding the optimal parameters

» We want to choose parameters A, A, A, ... that maximize the
conditional log-likelihood of the training data

CLogLike(D)=), log P(c,|d,)

* To be able to do that, we’ve worked out how to calculate the function
value and its partial derivatives (its gradient)
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A likelihood surface
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Chris Manning

Finding the optimal parameters

* Use your favorite numerical optimization package....
* Commonly (and in our code), you minimize the negative
of CLoglLik
1) Gradient descent (GD); Stochastic gradient descent (SGD)

2) Iterative proportional fitting methods: Generalized Iterative
Scaling (GIS) and Improved lterative Scaling (11S)

3) Conjugate gradient (CG), perhaps with preconditioning
4) Quasi-Newton methods — limited memory variable metric
(LMVM) methods, in particular, L-BFGS (used in the

homework)

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University 43/57
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Chris Manning

Smoothing: Issues of Scale

* Lots of features:
— NLP maxent models can have well over a million features.

— Even storing a single array of parameter values can have a
substantial memory cost.

* Lots of sparsity:
— Overfitting very easy — we need smoothing!

— Many features seen in training will never occur again at test time.

* Optimization problems:

— Feature weights can be infinite, and iterative solvers can take a
long time to get to those infinities.

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University
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Smoothing: Issues

Heads Tails
* Assume the following empirical distribution:
h t
* Features: {Heads}, {Tails}
* We'll have the following model distribution:
/
_ ¢ P e’
3 TAILS ~
Praps it gt o4 g
« Really, only one degree of freedom (A = A —A.)
1
by - /
ettt e ¢’ .
Preaps = 3 L 0 dy T 0 Prais - |
ele’TteTe T e te Tl !
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Chris Manning

The data likelihood in this model is:

log P

Smoothing: Issues

log P(h,t| 1) = hlog pupaps * 110 Prans

log P(h,t|A)= h) - (¢+ h)log(1+ ")

0 _—
2 el
-4
-6
R — 2 4
Heads Tails
2 2

Mohamed Aly — CMP462 Spring 2013

_Z el
log P -4 /\
-6
R a— 2
Heads Tails
3 1

log P

Tails

Computer Engineering, Cairo University
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Chris Manning

Smoothing: Early Stopping

* Inthe 4/0 case, there were two problems:

The optimal value of A was o, which is a long trip for an
optimization procedure.

— The learned distribution is just as spiked as the empirical
one — no smoothing.

°* One way to solve both issues is to just stop the
optimization early, after a few iterations.

— The value of A will be finite (but presumably big).
— The optimization won’t take forever (clearly).
— Commonly used in early maxent work.

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University
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Chris Manning

Smoothing: Priors (MAP)

* What if we had a prior expectation that parameter values wouldn’t be very
large?

* We could then balance evidence suggesting large parameters (or infinite)
against our prior.

* The evidence would never totally defeat the prior, and parameters would be
smoothed (and kept finite!).

* We can do this explicitly by changing the optimization objective to maximum
posterior likelihood:

log P(C,A | D)=log P(A)+ log P(C|D,1)

Posterior Prior Evidence

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University 49/57



Chris Manning

Smoothing: Priors

202 =00
* Gaussian, or quadratic, or L2 priors: 0
— Intuition: parameters shouldn’t be large. )
— Formalization: prior expectation that each parameter will

be distributed according to a gaussian with mean ptand
variance 02. _6
(Ai ) ﬂi)Z g -8

P 0 \/»exp 2012 : 4 1K}

. o ~ They don’t even capitalize
— Penalizes parameters for drifting to far from their ~ my name anymore!

mean prior value (usually p=0).
— 20°=1 works surprisingly well.

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University



Chris Manning

Smoothing: Priors

* |If we use gaussian priors:
— Trade off some expectation-matching for smaller parameters.

— When multiple features can be recruited to explain a data point, the
more common ones generally receive more weight.

— Accuracy generally goes up!

* Change the objective: ,
log P(C,} |D)=1ogP(C|D,}) +log P(M\) 4
(- 1) %
log P(C,1 | D)= P(c|d, ) -y ————tk
(c,d)g(C,D) z 20 R/
* Change the derivative:

0 log P(C,A | D)/}, = actual(f,,C)- predicted(f;,A)-(4.- .)/0°

Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University 51/57



Chris Manning

Smoothing: Priors

* |If we use gaussian priors:
— Trade off some expectation-matching for smaller parameters.

— When multiple features can be recruited to explain a data point, the
more common ones generally receive more weight.

— Accuracy generally goes up!

* Change the objective: ,
log P(C,} | D)= log P(C|D,}) +log P(\) 4
12 -6
log P(C,A | D)= Plc|d,}) -y Zi+k
(c,d)g(C,D) zl 20 B
* Change the derivative:

Taking prior

d log P(C,} | D)/d), = actual(f;,C)- predicted(f,,A)-A./0°  meanas0
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Chris Manning

Example: POS Tagging

* From (Toutanova et al., 2003): "
97,1 —
gverall Unknown 97 //_ —— No Smoothing
ccuracy | Word Acc 96,9 S —— Smoothing
_ g 96,8 I \\
Without 96.54 | 85.20 S BN
moothing g
) 96,6 / \\\
With 97.10 88.20 9.5
Smoothing 9.4 *(
96,3
. 0 100 200 300 400
¢ SmOOthlng he|pSZ Training lterations

— Softens distributions.
— Pushes weight onto more explanatory features.
— Allows many features to be dumped safely into the mix.

— Speeds up convergence (if both are allowed to converge)!
Mohamed Aly — CMP462 Spring 2013 Computer Engineering, Cairo University 53/57



Chris Manning

Smoothing: Regularization

Talking of “priors” and “MAP estimation” is Bayesian
language

In frequentist statistics, people will instead talk about

using “regularization”, and in particular, a gaussian prior
is “L2 regularization”

The choice of names makes no difference to the math
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Chris Manning

* Another option: smooth the data, not the parameters.

*  Example:

0
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Y2 0 2
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4 0

oy

— Equivalent to adding two extra data points.
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B 2
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5 1

— Similar to add-one smoothing for generative models.

* Hard to know what artificial data to create!
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Chris Manning

Smoothing: Count Cutoffs

* In NLP, features with low empirical counts are often dropped.
— Very weak and indirect smoothing method.
— Equivalent to locking their weight to be zero.
— Equivalent to assigning them gaussian priors with mean zero and variance zero.

— Dropping low counts does remove the features which were most in need of
smoothing...

— ...and speeds up the estimation by reducing model size ...

— ... but count cutoffs generally hurt accuracy in the presence of proper
smoothing.

* We recommend: don’t use count cutoffs unless absolutely
necessary for memory usage reasons.
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Recap

* Generative Vs Discriminative Models
* Features

e MaxEnt Models

* Training

e Smoothing
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