
CMP462: Natural Language Processing

Lecture 06: Maximum Entropy Classifiers

Mohamed Alaa El-Dien Aly
Computer Engineering Department

Cairo University
Spring 2013



Mohamed Aly – CMP462 Spring 2013 Computer Engineering, Cairo University 2/57

Agenda
● Generative Vs Discriminative Models
● Features
● MaxEnt Models
● Training
● Smoothing
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Maxent Models and 
Discriminative 

Estimation

Generative vs. Discriminative 
models

Christopher Manning
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Introduction

• So far we’ve looked at “generative models”
– Language models, Naive Bayes

• But there is now much use of conditional or discriminative probabilistic 
models in NLP, Speech, IR (and ML generally)

• Because:
– They give high accuracy performance
– They make it easy to incorporate lots of linguistically important features
– They allow automatic building of language independent, retargetable NLP 

modules
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Joint vs. Conditional Models

• We have some data {(d, c)} of paired observations d and 
hidden classes c.

• Joint (generative) models place probabilities over both 
observed data and the hidden stuff (generate the 
observed data from hidden stuff): 

– All the classic StatNLP models:
● n-gram models, Naive Bayes classifiers, hidden Markov 

models, probabilistic context-free grammars, IBM machine 
translation alignment models

P(c,d)
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Joint vs. Conditional Models

• Discriminative (conditional) models take the data as 
given, and put a probability over hidden structure 
given the data:

● Logistic regression, conditional loglinear or maximum 
entropy models, conditional random fields

● Also, SVMs, (averaged) perceptron, etc. are 
discriminative classifiers (but not directly 
probabilistic)

P(c|d)
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Bayes Net/Graphical Models

• Bayes net diagrams draw circles for random variables, and lines for direct 
dependencies

• Some variables are observed; some are hidden
• Each node is a little classifier (conditional probability table) based on incoming arcs

c

d1 d 2 d 3

Naive Bayes

c

d1 d2 d3

Generative

Logistic Regression

Discriminative
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Conditional vs. Joint Likelihood

• A joint model gives probabilities P(d,c) and tries to maximize this joint 
likelihood.

– It turns out to be trivial to choose weights: just relative frequencies.

• A conditional model gives probabilities P(c|d). It takes the data as given 
and models only the conditional probability of the class.

– We seek to maximize conditional likelihood.
– Harder to do (as we’ll see…)
– More closely related to classification error.
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Conditional models work well: 
Word Sense Disambiguation

• Even with exactly the same 
features, changing from joint 
to conditional estimation 
increases performance

• That is, we use the same 
smoothing, and the same 
word-class features, we just 
change the numbers 
(parameters) 

Training Set

Objective Accuracy

Joint Like. 86.8

Cond. Like. 98.5

Test Set

Objective Accuracy

Joint Like. 73.6

Cond. Like. 76.1

(Klein and Manning 2002, using Senseval-1 Data)
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Discriminative Model 
Features

Making features from text for 
discriminative NLP models

Christopher Manning
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Features

• In these slides and most maxent work: features f are elementary pieces 
of evidence that link aspects of what we observe d with a category c 
that we want to predict

• A feature is a function with a bounded real value:  f: C × D → ℝ
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Example features

– f
1
(c, d) ≡ [c = LOCATION ∧ w

-1
 = “in” ∧ isCapitalized(w)]

– f
2
(c, d) ≡ [c = LOCATION ∧ hasAccentedLatinChar(w)]

– f
3
(c, d) ≡ [c = DRUG ∧ ends(w, “c”)]

• Models will assign to each feature a weight:
– A positive weight votes that this configuration is likely correct
– A negative weight votes that this configuration is likely incorrect

    LOCATION
in Québec

     PERSON
saw Sue

    DRUG
taking Zantac

    LOCATION
in Arcadia
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Feature Expectations

• We will crucially make use of two expectations 
● actual or predicted counts of a feature firing:

– Empirical count (expectation) of a feature:

– Model expectation of a feature:

empirical E ( f i)=∑(c ,d )∈observed (C , D)
f i (c ,d )

E ( f i)=∑(c , d )∈observed (C , D)
P (c ,d ) f i(c ,d )
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Features
• In NLP uses, usually a feature specifies

1) an indicator function – a yes/no boolean matching function – of 
properties of the input and

2) a particular class

         f
i
(c, d) ≡ [Φ(d) ∧ c = c

j
]            [Value is 0 or 1]

– Each feature picks out a data subset and suggests a 
label for it
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Feature-Based Models

• The decision about a data point is based only on the features 
active at that point.

BUSINESS: Stocks hit 
a yearly low …

Data

Features

{…, stocks, hit, a, 
yearly, low, …}

Label: BUSINESS

Text Categorization

… to restructure 
bank:MONEY debt.

Data

Features

{…, w-1=restructure, 
w+1=debt, L=12, …}

Label: MONEY

Word-Sense 
Disambiguation

 DT      JJ       NN …
The previous fall …

Data

Features

{w=fall, t
-1
=JJ 

w
-1
=previous}

Label: NN

POS Tagging
e.g. fi = [“stocks” occur and 
               Label=”BUSINESS”]
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Example: Text Categorization

(Zhang and Oles 2001)
• Features are presence of each word in a document and the document class 

(they do feature selection to use reliable indicator words)
• Tests on classic Reuters data set (and others)

– Naïve Bayes: 77.0% F1
– Linear regression: 86.0%
– Logistic regression: 86.4%
– Support vector machine: 86.5%

• Paper emphasizes the importance of regularization (smoothing) for 
successful use of discriminative methods (not used in much early NLP/IR 
work)
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Other Maxent Classifier Examples

• You can use a maxent classifier whenever you want to assign data 
points to one of a number of classes:

– Sentence boundary detection (Mikheev 2000)

● Is a period end of sentence or abbreviation?
– Sentiment analysis (Pang and Lee 2002)

● Word unigrams, bigrams, POS counts, …
– PP attachment (Ratnaparkhi 1998)

● Attach to verb or noun? Features of head noun, preposition, 
etc.

– Parsing decisions in  general (Ratnaparkhi 1997; Johnson et al. 1999, etc.)
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Feature-based Linear 
Classifiers

How to put features into a 
classifier
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Feature-Based Linear Classifiers

• Linear classifiers at classification time:
– Linear function from feature sets {f

i
} to classes {c}. 

– Assign a weight λ
i
 to each feature f

i
.

– We consider each class for an observed datum d
– For a pair (c,d), features vote with their weights: 

● vote(c) = Σλ
i 
f
i
(c,d)

– Choose the class c which maximizes Σλ
i
f
i
(c,d)

    LOCATION
in Québec

    DRUG
in Québec

    PERSON
in Québec

1.8 0.3

f
1
(c, d) ≡ [c = LOCATION ∧ w

-1
 = “in” ∧ isCapitalized(w)]

f
2
(c, d) ≡ [c = LOCATION ∧ hasAccentedLatinChar(w)]

f
3
(c, d) ≡ [c = DRUG ∧ ends(w, “c”)]

–0.6 

PERSON: 0
LOCATION: 1.2
DRUG: 0.3
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Feature-Based Linear Classifiers

There are many ways to chose weights for features

– Perceptron: find a currently misclassified example, and nudge 
weights in the direction of its correct classification

– Margin-based methods (Support Vector Machines)
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Feature-Based Linear Classifiers

• Exponential (log-linear, maxent, logistic, Gibbs) models:
– Make a probabilistic model from the linear combination Σλ

i  
f
i
(c,d) 

● P(LOCATION|in Québec) = e1.8e–0.6/(e1.8e–0.6 + e0.3 + e0) = 0.586
● P(DRUG|in Québec) = e0.3 /(e1.8e–0.6 + e0.3 + e0) = 0.238
● P(PERSON|in Québec) = e0 /(e1.8e–0.6 + e0.3 + e0) = 0.176

– The weights are the parameters of the probability model, 
combined via a “soft max” function

Makes votes positive

Normalizes votes
P (c | d ,λ)=

exp(∑i
λ i f i(c , d ))

∑c '
exp(∑i

λ i f i(c ' ,d ))
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Feature-Based Linear Classifiers

• Exponential (log-linear, maxent, logistic, Gibbs) models:
– Given this model form, we will choose parameters {λi} that 

maximize the conditional likelihood of the data according to 
this model.

– We construct not only classifications, but probability 
distributions over classifications.

● There are other (good!) ways of discriminating classes – SVMs, 
boosting, even perceptrons – but these methods are not as trivial 
to interpret as distributions over classes.
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Aside: logistic regression

• Maxent models in NLP are essentially the same as multiclass 
logistic regression models in statistics (or machine learning)

– If you haven’t seen these before, don’t worry, this presentation is self-
contained!

– If you have seen these before you might think about:
● The parameterization is slightly different in a way that is 

advantageous for NLP-style models with tons of sparse features (but 
statistically inelegant)

● The key role of feature functions in NLP and in this presentation
– The features are more general, with f also being a function of the class – 

when might this be useful?
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Quizz Question

• Assuming exactly the same set up (3 class decision: LOCATION, PERSON, or 
DRUG; 3 features as before, maxent), what are:

– P(PERSON | by Goéric)    = 
– P(LOCATION | by Goéric) = 
– P(DRUG | by Goéric)       = 

–  1.8    f1(c, d) ≡ [c = LOCATION ∧ w
-1
 = “in” ∧ isCapitalized(w)]

– -0.6   f2(c, d) ≡ [c = LOCATION ∧ hasAccentedLatinChar(w)]
–  0.3    f3(c, d) ≡ [c = DRUG ∧ ends(w, “c”)]

PERSON
by Goéric

LOCATION
by Goéric

DRUG
by Goéric
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Building a Maxent 
Model

The nuts and bolts
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Building a Maxent Model

• We define features (indicator functions) over data points
– Features represent sets of data points which are distinctive enough to deserve 

model parameters.
● Words, but also “word contains number”, “word ends with ing”, etc.

• We will simply encode each Φ feature as a unique String
– A datum will give rise to a set of Strings: the active Φ features
– Each feature f

i
(c, d) ≡ [Φ(d) ∧ c = c

j
] gets a real number weight

• We concentrate on Φ features but the math uses i indices of f
i
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Building a Maxent Model

• Features are often added during model development to target 
errors i.e. to get rid of training errors

– Often, the easiest thing to think of are features that mark bad combinations

• Then, for any given feature weights, we want to be able to calculate:
– Data conditional likelihood
– Derivative of the likelihood wrt each feature weight

● Uses expectations of each feature according to the model

• We can then find the optimum feature weights (discussed later).
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Maxent Models and 
Discriminative 

Estimation

Maximizing the likelihood
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Exponential Model Likelihood

• Maximum (Conditional) Likelihood Models :
– Given a model form, choose values of parameters to maximize the (conditional) 

likelihood of the data.

∑∑
∈∈

==
),(),(),(),(

log),|(log),|(log
DCdcDCdc

dcPDCP λλ
∑ ∑

'

),'(exp
c i

ii dcfλ

∑
i

ii dcf ),(exp λ
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The Likelihood Value

• The (log) conditional likelihood of iid data (C,D) according to maxent 
model is a function of the data and the parameters λ:

• If there aren’t many values of c, it’s easy to calculate:

log P (C | D ,λ)=log∏
(c , d )∈(C , D)

P (c | d ,λ)=∑
(c ,d )∈(C , D)

log P (c | d ,λ)

log P (c | d ,λ)=∑(c , d )∈(C , D)
log

exp (∑i
λi f i (c , d ))

∑c '
exp (∑i

f i (c ' ,d ))
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The Likelihood Value
• We can separate this into two components:

• The derivative is the difference between the derivatives of each 
component

log P (c |d ,λ)= ∑(c , d )∈(C , D)
log exp(∑i

λ i f i(c , d ))−
∑

(c , d )∈(C , D)
log∑c '

exp(∑i
f i(c ' , d ))

log P (c | d ,λ)=N (λ)−M (λ)
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The Derivative I: Numerator

Derivative of the numerator is: the empirical count(fi, c)

∂ N (λ)
∂λi

=∂
∂λi

[∑(c , d )∈(C , D )
log exp(∑i

λi f i(c ,d ))]
=∑(c ,d )∈(C , D )

∂
∂λi

[∑i
λi f i(c , d )]

=∑(c ,d )∈(C , D )
f i (c , d )
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The Derivative II: Denominator
∂ M (λ)

∂λi
= ∂

∂λi
[∑(c , d )∈(C , D)

log∑c '
exp(∑i

λi f i(c ' , d ))]
=∑(c , d )

∂
∂λi

[ log∑c '
exp(∑i

λi f i(c ' , d ))]

=∑(c , d )

∂
∂λi

[∑c '
exp(∑i

λi f i (c ' ,d ))]
∑c ' '

exp(∑i
λi f i (c ' ' , d ))

=∑(c , d )

∑c '
exp(∑i

λi f i(c ' ,d ))( ∂
∂λi

[∑i
λi f i(c ' , d ))]

∑c ' '
exp(∑i

λi f i(c ' ' , d ))
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The Derivative II: Denominator

∂ M (λ)
∂λi

=∑(c ,d )

∑c '
exp(∑i

λi f i(c ' , d ))( ∂
∂λi

[∑i
λi f i(c ' ,d ))]

∑c ' '
exp(∑i

λi f i (c ' ' , d ))

=∑(c , d )

∑c '
exp(∑i

λi f i(c ' ,d ))( f i(c ' , d ))

∑c ' '
exp(∑i

λi f i(c ' ' , d ))

=∑(c ,d )∑c '

exp(∑i
λi f i(c ' , d ))

∑c ' '
exp(∑i

λi f i(c ' ' , d ))
f i(c ' , d )

=∑(c ,d )∑c '
P (c ' | d ,λ) f i(c ' ,d ) predicted count(fi, λ)
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The Derivative III

• The optimum parameters are the ones for which each feature’s 
predicted expectation equals its empirical expectation.  The optimum 
distribution is:

– Always unique (but parameters may not be unique) as it's convex
– Always exists (if feature counts are from actual data).

• These models are also called maximum entropy models because we 
find the model having maximum entropy and satisfying the 
constraints:

∂
∂λi

log P (C | D ,λ)=actual count ( f i ,C )−predicted count ( f i ,λ)

E p( f j)=E p̃( f j)∀ j
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Finding the optimal parameters

• We want to choose parameters λ1, λ2, λ3, … that maximize the 
conditional log-likelihood of the training data

• To be able to do that, we’ve worked out how to calculate the function 
value and its partial derivatives (its gradient)

CLogLike(D)=∑i
log P (ci | d i)
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A likelihood surface
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Finding the optimal parameters
• Use your favorite numerical optimization package….

● Commonly (and in our code), you minimize the negative 
of CLogLik

1) Gradient descent (GD); Stochastic gradient descent (SGD)
2) Iterative proportional fitting methods: Generalized Iterative 

Scaling (GIS) and Improved Iterative Scaling (IIS)
3) Conjugate gradient (CG), perhaps with preconditioning
4) Quasi-Newton methods – limited memory variable metric 

(LMVM) methods, in particular, L-BFGS (used in the 
homework)



Mohamed Aly – CMP462 Spring 2013 Computer Engineering, Cairo University 44/57

Smoothing/Priors/ 
Regularization for 
Maxent Models
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Smoothing: Issues of Scale

• Lots of features:
– NLP maxent models can have well over a million features.
– Even storing a single array of parameter values can have a 

substantial memory cost.

• Lots of sparsity:
– Overfitting very easy – we need smoothing!
– Many features seen in training will never occur again at test time.

• Optimization problems:
– Feature weights can be infinite, and iterative solvers can take a 

long time to get to those infinities.
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Smoothing: Issues
• Assume the following empirical distribution:

• Features: {Heads}, {Tails}
• We’ll have the following model distribution:

• Really, only one degree of freedom (λ = λ
H
−λ

T
)

Heads Tails

h t

λ

TH

H

HEADS λλ

λ

ee

e
p

+
=

TH

T

TAILS λλ

λ

ee

e
p

+
=

0HEADS TTTH

TH

ee

e

eeee

ee
p

+
=

+
= −−

−

λ

λ

λλλλ

λλ

0

0

TAILS ee

e
p

+
= λ
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Smoothing: Issues

• The data likelihood in this model is:

Heads Tails

2 2

Heads Tails

3 1

Heads Tails

4 0

λ λ λ

log P log P log P

TAILSHEADS loglog)|,(log ptphthP +=λ

)1(log)()|,(log λλλ ehththP ++−=
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Smoothing: Early Stopping

• In the 4/0 case, there were two problems:
– The optimal value of λ was ∞, which is a long trip for an 

optimization procedure.
– The learned distribution is just as spiked as the empirical 

one – no smoothing.

• One way to solve both issues is to just stop the 
optimization early, after a few iterations.

– The value of λ will be finite (but presumably big).
– The optimization won’t take forever (clearly).
– Commonly used in early maxent work.

Heads Tails

4 0

Heads Tails

1 0

Input

Output

λ
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Smoothing: Priors (MAP)

• What if we had a prior expectation that parameter values wouldn’t be very 
large?

• We could then balance evidence suggesting large parameters (or infinite) 
against our prior.

• The evidence would never totally defeat the prior, and parameters would be 
smoothed (and kept finite!).

• We can do this explicitly by changing the optimization objective to maximum 
posterior likelihood:

Posterior Prior Evidence

),|(log)(log)|,(log λλλ DCPPDCP +=
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Smoothing: Priors

• Gaussian, or quadratic, or L2 priors:
– Intuition: parameters shouldn’t be large.
– Formalization: prior expectation that each parameter will 

be distributed according to a gaussian with mean µ and 
variance σ2.

– Penalizes parameters for drifting to far from their 
mean prior value (usually µ=0).

– 2σ2=1 works surprisingly well.

2σ2=
1

2σ2 = 
10

2σ2 = ∞

÷÷




 −−=
2

2

2

)(
exp

2

1
)(

i

ii

i

iP
σ

µλ
πσ

λ

They don’t even capitalize 
my name anymore!



Chris Manning

Mohamed Aly – CMP462 Spring 2013 Computer Engineering, Cairo University 51/57

Smoothing: Priors

• If we use gaussian priors:
– Trade off some expectation-matching for smaller parameters.
– When multiple features can be recruited to explain a data point, the 

more common ones generally receive more weight.
– Accuracy generally goes up!

• Change the objective:

• Change the derivative:

2σ2
=1

2σ2 
= 10

2σ2 = ∞

),|(log)|,(log λλ DCPDCP =

∑
∈

=
),(),(

),|()|,(log
DCdc

dcPDCP λλ

),(predicted),(actual/)|,(log λλλ iii fCfDCP −=∂∂
  

− (λ i − µ i)
2

2σ i
2

i

∑ + k

  

− (λ i − µ i) /σ 2

+log P (λ)
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Smoothing: Priors

• If we use gaussian priors:
– Trade off some expectation-matching for smaller parameters.
– When multiple features can be recruited to explain a data point, the 

more common ones generally receive more weight.
– Accuracy generally goes up!

• Change the objective:

• Change the derivative:

2σ2
=1

2σ2 
= 10

2σ2 = ∞

),|(log)|,(log λλ DCPDCP =

∑
∈

=
),(),(

),|()|,(log
DCdc

dcPDCP λλ

),(predicted),(actual/)|,(log λλλ iii fCfDCP −=∂∂
Taking prior 
mean as 0

− λ i
2

2σ i
2

i

∑ + k

− λ i / σ 2

+log P (λ)
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Example: POS Tagging

• From (Toutanova et al., 2003):

• Smoothing helps:
– Softens distributions.
– Pushes weight onto more explanatory features.
– Allows many features to be dumped safely into the mix.
– Speeds up convergence (if both are allowed to converge)!

Overall 
Accuracy

Unknown 
Word Acc

Without 
Smoothing

96.54 85.20

With 
Smoothing

97.10 88.20
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Smoothing: Regularization

• Talking of “priors” and “MAP estimation” is Bayesian 
language

• In frequentist statistics, people will instead talk about 
using “regularization”, and in particular, a gaussian prior 
is “L2 regularization”

• The choice of names makes no difference to the math
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Smoothing: Virtual Data
• Another option: smooth the data, not the parameters.
• Example:

– Equivalent to adding two extra data points.
– Similar to add-one smoothing for generative models.

• Hard to know what artificial data to create!

Heads Tails

4 0

Heads Tails

5 1
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Smoothing: Count Cutoffs

• In NLP, features with low empirical counts are often dropped.
– Very weak and indirect smoothing method.
– Equivalent to locking their weight to be zero.
– Equivalent to assigning them gaussian priors with mean zero and variance zero.
– Dropping low counts does remove the features which were most in need of 

smoothing…
– … and speeds up the estimation by reducing model size …
– … but count cutoffs generally hurt accuracy in the presence of proper 

smoothing.

• We recommend: don’t use count cutoffs unless absolutely 
necessary for memory usage reasons.
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Recap

● Generative Vs Discriminative Models
● Features
● MaxEnt Models
● Training
● Smoothing
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