CMP462: Natural Language Processing

Lecture 06: Maximum Entropy Classifiers

Mohamed Alaa El-Dien Aly
Computer Engineering Department
Cairo University
Spring 2013

Agenda

- Generative Vs Discriminative Models
- Features
- MaxEnt Models
- Training
- Smoothing

Acknowledgment:

Most slides adapted from Chris Manning and Dan Jurafsky's NLP class on Coursera.

Maxent Models and Discriminative Estimation

Generative vs. Discriminative models

Christopher Manning

Introduction

- So far we've looked at "generative models"
 - Language models, Naive Bayes
- But there is now much use of conditional or discriminative probabilistic models in NLP, Speech, IR (and ML generally)
- Because:
 - They give high accuracy performance
 - They make it easy to incorporate lots of linguistically important features
 - They allow automatic building of language independent, retargetable NLP modules

Joint vs. Conditional Models

- We have some data {(d, c)} of paired observations d and hidden classes c.
- Joint (generative) models place probabilities over both observed data and the hidden stuff (generate the observed data from hidden stuff):

P(c,d)

- All the classic StatNLP models:
 - n-gram models, Naive Bayes classifiers, hidden Markov models, probabilistic context-free grammars, IBM machine translation alignment models

Joint vs. Conditional Models

 Discriminative (conditional) models take the data as given, and put a probability over hidden structure given the data:

P(c|d)

- Logistic regression, conditional loglinear or maximum entropy models, conditional random fields
- Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly probabilistic)

Bayes Net/Graphical Models

- Bayes net diagrams draw circles for random variables, and lines for direct dependencies
- Some variables are observed; some are hidden
- Each node is a little classifier (conditional probability table) based on incoming arcs

Logistic Regression

Generative

Discriminative

Conditional vs. Joint Likelihood

- A joint model gives probabilities P(d,c) and tries to maximize this joint likelihood.
 - It turns out to be trivial to choose weights: just relative frequencies.
- A *conditional* model gives probabilities P(c|d). It takes the data as given and models only the conditional probability of the class.
 - We seek to maximize conditional likelihood.
 - Harder to do (as we'll see...)
 - More closely related to classification error.

Conditional models work well: Word Sense Disambiguation

Training Set	
Objective	Accuracy
Joint Like.	86.8
Cond. Like.	98.5

Test Set	
Objective	Accuracy
Joint Like.	73.6
Cond. Like.	76.1

- Even with exactly the same features, changing from joint to conditional estimation increases performance
- That is, we use the same smoothing, and the same word-class features, we just change the numbers (parameters)

(Klein and Manning 2002, using Senseval-1 Data)

Discriminative Model Features

Making features from text for discriminative NLP models

Christopher Manning

Features

- In these slides and most maxent work: features f are elementary pieces
 of evidence that link aspects of what we observe d with a category c
 that we want to predict
- A feature is a function with a bounded real value: $f: C \times D \to \mathbb{R}$

Example features

- $f_1(c, d) = [c = \text{LOCATION} \land w_1 = \text{``in''} \land \text{isCapitalized}(w)]$
- $f_2(c, d) = [c = LOCATION \land hasAccentedLatinChar(w)]$
- $f_3(c, d) \equiv [c = DRUG \land ends(w, "c")]$

- Models will assign to each feature a weight:
 - A positive weight votes that this configuration is likely correct
 - A negative weight votes that this configuration is likely incorrect

Feature Expectations

- We will crucially make use of two expectations
 - actual or predicted counts of a feature firing:
 - Empirical count (expectation) of a feature:

empirical
$$E(f_i) = \sum_{(c,d) \in observed(C,D)} f_i(c,d)$$

Model expectation of a feature:

$$E(f_i) = \sum_{(c,d) \in observed(C,D)} P(c,d) f_i(c,d)$$

Features

- In NLP uses, usually a feature specifies
 - 1) an indicator function a yes/no boolean matching function of properties of the input and
 - 2) a particular class

$$f_i(c, d) \equiv [\Phi(d) \land c = c_j]$$
 [Value is 0 or 1]

 Each feature picks out a data subset and suggests a label for it

Feature-Based Models

The decision about a data point is based only on the features active at that point.

Data

BUSINESS: Stocks hit

a yearly low ...

Label: BUSINESS

Features

{..., stocks, hit, a, yearly, low, ...}

Text Categorization e.g. f_i = ["stocks" occur and

Label="BUSINESS"]

Data

... to restructure bank:MONEY debt.

Label: MONEY

Features

 $\{\dots, w-1=\text{restructure}, \dots, w-1=\text{restructure}\}$ w+1=debt, L=12, ...

Word-Sense Disambiguation Data

DT JJ NN The previous fall ...

Label: NN

Features

 $\{w = \text{fall}, t_1 = JJ\}$ w_1 =previous}

POS Tagging

Example: Text Categorization

(Zhang and Oles 2001)

- Features are presence of each word in a document and the document class (they do feature selection to use reliable indicator words)
- Tests on classic Reuters data set (and others)
 - Naïve Bayes: 77.0% F1
 - Linear regression: 86.0%
 - Logistic regression: 86.4%
 - Support vector machine: 86.5%
- Paper emphasizes the importance of regularization (smoothing) for successful use of discriminative methods (not used in much early NLP/IR work)

Other Maxent Classifier Examples

- You can use a maxent classifier whenever you want to assign data points to one of a number of classes:
 - Sentence boundary detection (Mikheev 2000)
 - Is a period end of sentence or abbreviation?
 - Sentiment analysis (Pang and Lee 2002)
 - Word unigrams, bigrams, POS counts, ...
 - PP attachment (Ratnaparkhi 1998)
 - Attach to verb or noun? Features of head noun, preposition, etc.
 - Parsing decisions in general (Ratnaparkhi 1997; Johnson et al. 1999, etc.)

How to put features into a classifier

 $f_1(c, d) \equiv [c = \text{LOCATION} \land w_{-1} = \text{``in''} \land \text{isCapitalized}(w)]$ $f_2(c, d) \equiv [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)]$

- Linear classifiers at classification time: $f_3(c, d) = [c = DRUG \land ends(w, "c")]$
 - Linear function from feature sets $\{f_i\}$ to classes $\{c\}$.
 - Assign a weight λ_i to each feature f_i .
 - We consider each class for an observed datum d
 - For a pair (c,d), features vote with their weights:
 - vote(c) = $\sum \lambda_i f_i(c,d)$

- Choose the class c which maximizes $\sum \lambda f_i(c,d)$

PERSON: 0

LOCATION: 1.2

DRUG: 0.3

There are many ways to chose weights for features

 Perceptron: find a currently misclassified example, and nudge weights in the direction of its correct classification

Margin-based methods (Support Vector Machines)

- Exponential (log-linear, maxent, logistic, Gibbs) models:
 - Make a probabilistic model from the linear combination $\sum \lambda_i f_i(c,d)$

$$P(c|d,\lambda) = \frac{\exp\left(\sum_{i} \lambda_{i} f_{i}(c,d)\right)}{\sum_{c'} \exp\left(\sum_{i} \lambda_{i} f_{i}(c',d)\right)} \leftarrow \frac{\text{Makes votes positive}}{\text{Normalizes votes}}$$

- $P(LOCATION|in\ Qu\'ebec) = e^{1.8}e^{-0.6}/(e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.586$
- $P(DRUG|in\ Qu\'ebec) = e^{0.3}/(e^{1.8}e^{-0.6} + e^{0.3} + e^{0}) = 0.238$
- $P(PERSON|in\ Qu\'ebec) = e^0 /(e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.176$
- The weights are the parameters of the probability model, combined via a "soft max" function

- Exponential (log-linear, maxent, logistic, Gibbs) models:
 - Given this model form, we will choose parameters $\{\lambda_i\}$ that maximize the conditional likelihood of the data according to this model.
 - We construct not only classifications, but probability distributions over classifications.
 - There are other (good!) ways of discriminating classes SVMs, boosting, even perceptrons – but these methods are not as trivial to interpret as distributions over classes.

Aside: logistic regression

- Maxent models in NLP are essentially the same as multiclass logistic regression models in statistics (or machine learning)
 - If you haven't seen these before, don't worry, this presentation is selfcontained!
 - If you have seen these before you might think about:
 - The parameterization is slightly different in a way that is advantageous for NLP-style models with tons of sparse features (but statistically inelegant)
 - The key role of feature functions in NLP and in this presentation
 - The features are more general, with f also being a function of the class when might this be useful?

Quizz Question

- Assuming exactly the same set up (3 class decision: LOCATION, PERSON, or DRUG; 3 features as before, maxent), what are:
 - P(PERSON | by Goéric) =
 - P(LOCATION | by Goéric) =
 - P(DRUG | by Goéric) =
 - 1.8 $f1(c, d) \equiv [c = \text{LOCATION} \land w_1 = \text{"in"} \land \text{isCapitalized}(w)]$
 - -0.6 $f2(c, d) \equiv [c = LOCATION \land hasAccentedLatinChar(w)]$
 - 0.3 $f3(c, d) \equiv [c = DRUG \land ends(w, "c")]$

LOCATION by Goéric

by Goéric

Building a Maxent Model

The nuts and bolts

25/57

Building a Maxent Model

- We define features (indicator functions) over data points
 - Features represent sets of data points which are distinctive enough to deserve model parameters.
 - Words, but also "word contains number", "word ends with ing", etc.
- We will simply encode each Φ feature as a unique String
 - A datum will give rise to a set of Strings: the active Φ features
 - Each feature $f_i(c, d) \equiv [\Phi(d) \land c = c_j]$ gets a real number weight
- We concentrate on Φ features but the math uses i indices of f_i

Building a Maxent Model

- Features are often added during model development to target errors i.e. to get rid of training errors
 - Often, the easiest thing to think of are features that mark bad combinations

- Then, for any given feature weights, we want to be able to calculate:
 - Data conditional likelihood
 - Derivative of the likelihood wrt each feature weight
 - Uses expectations of each feature according to the model
- We can then find the optimum feature weights (discussed later).

Maxent Models and Discriminative Estimation

Maximizing the likelihood

Exponential Model Likelihood

- Maximum (Conditional) Likelihood Models :
 - Given a model form, choose values of parameters to maximize the (conditional) likelihood of the data.

$$\log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} \log P(c \mid d, \lambda) = \sum_{(c,d) \in (C,D)} \log \frac{\exp \sum_{i} \lambda_{i} f_{i}(c,d)}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c',d)}$$

The Likelihood Value

• The (log) conditional likelihood of iid data (C,D) according to maxent model is a function of the data and the parameters λ :

$$\log P(C|D,\lambda) = \log \prod_{(c,d) \in (C,D)} P(c|d,\lambda) = \sum_{(c,d) \in (C,D)} \log P(c|d,\lambda)$$

If there aren't many values of c, it's easy to calculate:

$$\log P(c|d,\lambda) = \sum_{(c,d) \in (C,D)} \log \frac{\exp\left(\sum_{i} \lambda_{i} f_{i}(c,d)\right)}{\sum_{c'} \exp\left(\sum_{i} f_{i}(c',d)\right)}$$

The Likelihood Value

We can separate this into two components:

$$\begin{split} \log P(c|d,\lambda) &= \sum_{(c,d) \in (C,D)} \log \exp \left(\sum_{i} \lambda_{i} f_{i}(c,d) \right) - \\ &= \sum_{(c,d) \in (C,D)} \log \sum_{c'} \exp \left(\sum_{i} f_{i}(c',d) \right) \\ \log P(c|d,\lambda) &= N(\lambda) - M(\lambda) \end{split}$$

The derivative is the difference between the derivatives of each component

The Derivative I: Numerator

$$\frac{\partial N(\lambda)}{\partial \lambda_{i}} = \frac{\partial}{\partial \lambda_{i}} \left[\sum_{(c,d) \in (C,D)} \log \exp \left(\sum_{i} \lambda_{i} f_{i}(c,d) \right) \right] \\
= \sum_{(c,d) \in (C,D)} \frac{\partial}{\partial \lambda_{i}} \left[\sum_{i} \lambda_{i} f_{i}(c,d) \right] \\
= \sum_{(c,d) \in (C,D)} f_{i}(c,d)$$

Derivative of the numerator is: the empirical count(f_r , c)

The Derivative II: Denominator

$$\begin{split} &\frac{\partial M(\lambda)}{\partial \lambda_{i}} = \frac{\partial}{\partial \lambda_{i}} \left[\sum_{(c,d) \in (C,D)} \log \sum_{c'} \exp \left(\sum_{i} \lambda_{i} f_{i}(c',d) \right) \right] \\ &= \sum_{(c,d)} \frac{\partial}{\partial \lambda_{i}} \left[\log \sum_{c'} \exp \left(\sum_{i} \lambda_{i} f_{i}(c',d) \right) \right] \\ &= \sum_{(c,d)} \frac{\frac{\partial}{\partial \lambda_{i}} \left[\sum_{c'} \exp \left(\sum_{i} \lambda_{i} f_{i}(c',d) \right) \right]}{\sum_{c''} \exp \left(\sum_{i} \lambda_{i} f_{i}(c'',d) \right)} \\ &= \sum_{(c,d)} \frac{\sum_{c'} \exp \left(\sum_{i} \lambda_{i} f_{i}(c',d) \right) \left(\frac{\partial}{\partial \lambda_{i}} \left[\sum_{i} \lambda_{i} f_{i}(c',d) \right) \right]}{\sum_{c''} \exp \left(\sum_{i} \lambda_{i} f_{i}(c'',d) \right)} \end{split}$$

The Derivative II: Denominator

The Derivative II: Denominator
$$\frac{\partial M(\lambda)}{\partial \lambda_{i}} = \sum_{(c,d)} \frac{\sum_{c'} \exp\left(\sum_{i} \lambda_{i} f_{i}(c',d)\right) \left(\frac{\partial}{\partial \lambda_{i}} \left[\sum_{i} \lambda_{i} f_{i}(c',d)\right)\right]}{\sum_{c''} \exp\left(\sum_{i} \lambda_{i} f_{i}(c'',d)\right)}$$

$$= \sum_{(c,d)} \frac{\sum_{c'} \exp\left(\sum_{i} \lambda_{i} f_{i}(c',d)\right) \left(f_{i}(c',d)\right)}{\sum_{c''} \exp\left(\sum_{i} \lambda_{i} f_{i}(c'',d)\right)}$$

$$= \sum_{(c,d)} \sum_{c'} \frac{\exp\left(\sum_{i} \lambda_{i} f_{i}(c',d)\right)}{\sum_{c''} \exp\left(\sum_{i} \lambda_{i} f_{i}(c'',d)\right)} f_{i}(c',d)$$

$$= \sum_{(c,d)} \sum_{c'} P(c'|d,\lambda) f_{i}(c',d) \quad \text{predicted count}(f_{i},\lambda)$$

The Derivative III

$$\frac{\partial}{\partial \lambda_i} \log P(C|D, \lambda) = \text{actual count}(f_i, C) - \text{predicted count}(f_i, \lambda)$$

- The optimum parameters are the ones for which each feature's predicted expectation equals its empirical expectation. The optimum distribution is:
 - Always unique (but parameters may not be unique) as it's convex
 - Always exists (if feature counts are from actual data).
- These models are also called maximum entropy models because we find the model having maximum entropy and satisfying the constraints:

$$E_p(f_j) = E_{\tilde{p}}(f_j) \forall j$$

Finding the optimal parameters

• We want to choose parameters λ_1 , λ_2 , λ_3 , ... that maximize the conditional log-likelihood of the training data

$$CLogLike(D) = \sum_{i} log P(c_i | d_i)$$

 To be able to do that, we've worked out how to calculate the function value and its partial derivatives (its gradient)

A likelihood surface

Finding the optimal parameters

- Use your favorite numerical optimization package....
 - Commonly (and in our code), you minimize the negative of CLogLik
 - 1) Gradient descent (GD); Stochastic gradient descent (SGD)
 - 2) Iterative proportional fitting methods: Generalized Iterative Scaling (GIS) and Improved Iterative Scaling (IIS)
 - 3) Conjugate gradient (CG), perhaps with preconditioning
 - 4) Quasi-Newton methods limited memory variable metric (LMVM) methods, in particular, L-BFGS (used in the homework)

Smoothing/Priors/ Regularization for Maxent Models

Smoothing: Issues of Scale

- Lots of features:
 - NLP maxent models can have well over a million features.
 - Even storing a single array of parameter values can have a substantial memory cost.
- Lots of sparsity:
 - Overfitting very easy we need smoothing!
 - Many features seen in training will never occur again at test time.
- Optimization problems:
 - Feature weights can be infinite, and iterative solvers can take a long time to get to those infinities.

Smoothing: Issues

Assume the following empirical distribution:

Heads	Tails
h	t

- Features: {Heads}, {Tails}
- We'll have the following model distribution:

$$p_{\text{HEADS}} = \frac{e^{\lambda_{\text{H}}}}{e^{\lambda_{\text{H}}} + e^{\lambda_{\text{T}}}}$$

$$p_{\text{TAILS}} = \frac{e^{\lambda_{\text{T}}}}{e^{\lambda_{\text{H}}} + e^{\lambda_{\text{T}}}}$$

• Really, only one degree of freedom ($\lambda = \lambda_H - \lambda_T$)

$$p_{\text{HEADS}} = \frac{e^{\lambda_{\text{H}}} e^{-\lambda_{\text{T}}}}{e^{\lambda_{\text{H}}} e^{-\lambda_{\text{T}}} + e^{\lambda_{\text{T}}} e^{-\lambda_{\text{T}}}} = \frac{e^{\lambda}}{e^{\lambda} + e^{0}} \qquad p_{\text{TAILS}} = \frac{e^{0}}{e^{\lambda} + e^{0}}$$

Smoothing: Issues

The data likelihood in this model is:

$$\log P(h, t | \lambda) = h \log p_{\text{HEADS}} + t \log p_{\text{TAILS}}$$

$$\log P(h,t \mid \lambda) = h\lambda - (t+h)\log(1+e^{\lambda})$$

Smoothing: Early Stopping

- In the 4/0 case, there were two problems:
 - The optimal value of λ was ∞ , which is a long trip for an optimization procedure.
 - The learned distribution is just as spiked as the empirical one – no smoothing.

- The value of λ will be finite (but presumably big).
- The optimization won't take forever (clearly).
- Commonly used in early maxent work.

Heads	Tails
4	0

Input

Heads	Tails
1	0

Output

Smoothing: Priors (MAP)

- What if we had a prior expectation that parameter values wouldn't be very large?
- We could then balance evidence suggesting large parameters (or infinite) against our prior.
- The evidence would never totally defeat the prior, and parameters would be smoothed (and kept finite!).
- We can do this explicitly by changing the optimization objective to maximum posterior likelihood:

$$\log P(C, \lambda \mid D) = \log P(\lambda) + \log P(C \mid D, \lambda)$$

Posterior

Prior

Evidence

Smoothing: Priors

- Gaussian, or quadratic, or L2 priors:
 - Intuition: parameters shouldn't be large.
 - Formalization: prior expectation that each parameter will be distributed according to a gaussian with mean μ and variance σ2.

$$P(\lambda_i) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp \left(-\frac{(\lambda_i - \mu_i)^2}{2\sigma_i^2}\right)$$

- Penalizes parameters for drifting to far from their mean prior value (usually μ =0).
- $-2\sigma^2=1$ works surprisingly well.

They don't even capitalize my name anymore!

Smoothing: Priors

- If we use gaussian priors:
 - Trade off some expectation-matching for smaller parameters.
 - When multiple features can be recruited to explain a data point, the more common ones generally receive more weight.
 - Accuracy generally goes up!
- Change the objective:

$$\log P(C, \lambda \mid D) = \log P(C \mid D, \lambda) + \log P(\lambda)$$

$$\log P(C, \lambda \mid D) = \sum_{(c,d) \in (C,D)} P(c \mid d, \lambda) - \sum_{i} \frac{(\lambda_{i} - \mu_{i})^{2}}{2\sigma_{i}^{2}} + k$$

Change the derivative:

$$\partial \log P(C, \lambda \mid D) / \partial \lambda_i = \operatorname{actual}(f_i, C) - \operatorname{predicted}(f_i, \lambda) - (\lambda_i - \mu_i) / \sigma^2$$

Smoothing: Priors

- If we use gaussian priors:
 - Trade off some expectation-matching for smaller parameters.
 - When multiple features can be recruited to explain a data point, the more common ones generally receive more weight.
 - Accuracy generally goes up!
- Change the objective:

$$\log P(C, \lambda \mid D) = \log P(C \mid D, \lambda) + \log P(\lambda)$$

$$\log P(C, \lambda \mid D) = \sum_{(c,d) \in (C,D)} P(c \mid d, \lambda) - \sum_{i} \frac{\lambda_{i}^{2}}{2\sigma_{i}^{2}} + k$$

Change the derivative:

$$\partial \log P(C, \lambda \mid D) / \partial \lambda_i = \operatorname{actual}(f_i, C) - \operatorname{predicted}(f_i, \lambda) - \lambda_i / \sigma^2$$

Taking prior mean as 0

Example: POS Tagging

From (Toutanova et al., 2003):

	Overall Accuracy	Unknown Word Acc
Without Smoothing	96.54	85.20
With Smoothing	97.10	88.20

- Smoothing helps:
 - Softens distributions.
 - Pushes weight onto more explanatory features.
 - Allows many features to be dumped safely into the mix.
 - Speeds up convergence (if both are allowed to converge)!

Smoothing: Regularization

- Talking of "priors" and "MAP estimation" is Bayesian language
- In frequentist statistics, people will instead talk about using "regularization", and in particular, a gaussian prior is "L2 regularization"
- The choice of names makes no difference to the math

Smoothing: Virtual Data

- Another option: smooth the data, not the parameters.
- Example:

- Equivalent to adding two extra data points.
- Similar to add-one smoothing for generative models.
- Hard to know what artificial data to create!

Smoothing: Count Cutoffs

- In NLP, features with low empirical counts are often dropped.
 - Very weak and indirect smoothing method.
 - Equivalent to locking their weight to be zero.
 - Equivalent to assigning them gaussian priors with mean zero and variance zero.
 - Dropping low counts does remove the features which were most in need of smoothing...
 - ... and speeds up the estimation by reducing model size ...
 - ... but count cutoffs generally hurt accuracy in the presence of proper smoothing.
- We recommend: don't use count cutoffs unless absolutely necessary for memory usage reasons.

Recap

- Generative Vs Discriminative Models
- Features
- MaxEnt Models
- Training
- Smoothing