
CMP302: Algorithms

Lecture 14: Breadth First Search and Depth
First Search

Mohamed Alaa El-Dien Aly
Computer Engineering Department

Cairo University
Fall 2013

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 2/74

Agenda

Acknowledgment
A lot of slides adapted from the slides of David Luebke, Erik Demaine, and Charles Leiserson.

● Breadth First Search
● Depth First Search

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 3/74

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.2

Graphs (review)

Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E ⊆ V × V of edges.
In an undirected graph G = (V, E), the edge
set E consists of unordered pairs of vertices.

In either case, we have |E | = O(V 2). Moreover,
if G is connected, then |E | ≥ |V | – 1, which
implies that lg |E | = Θ(lgV).

(Review CLRS, Appendix B.)

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 4/74

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.4

Adjacency-matrix
representation

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

A[i, j] =
1 if (i, j) ∈ E,
0 if (i, j) ∉ E.

22 11

33 44

A 1 2 3 4

1
2
3
4

0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 0

Θ(V 2) storage
⇒ dense
representation.

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 5/74

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.5

Adjacency-list representation

An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

22 11

33 44

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 6/74

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.6

Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

22 11

33 44

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, |Adj[v] | = out-degree(v).

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 7/74

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.7

Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

22 11

33 44

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, |Adj[v] | = out-degree(v).

Handshaking Lemma: ∑v∈V = 2 |E | for undirected
graphs ⇒ adjacency lists use Θ(V + E) storage —
a sparse representation (for either type of graph).

Handshaking Lemma: ∑
v∈V

 |Adj[v]| = 2 |E| for undirected graphs
i.e. adjacency lists use Θ(V + E) storage → a sparse representation
for either type of graph

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 8/74

Graph Searching

Given: a graph G = (V, E), directed or undirected

Goal: methodically explore every vertex and every edge
or find a path from a start vertex to a desired vertex

Ultimately: build a tree on the graph
● Pick a vertex as the root
● Choose certain edges to produce a tree
● Note: might also build a forest if graph is not

connected

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 10/74

Pocket Cube
2x2x2 Rubik's cube

Goal. Starting from a given configuration, find the steps to reach
the goal configuration i.e. solve the cube.

Solution. Represent each state as a vertex in a configuration
graph, and search the graph to solve the problem.

http://en.wikipedia.org/wiki/Pocket_Cube
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Jerry_Bryan__God's_Algorithm_for_the_2x2x2_Pocket_Cube.html

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 11/74

Breadth-First Search (BFS)

“Explore” a graph, turning it into a tree
– One vertex at a time
– Expand frontier of explored vertices across the breadth

of the frontier

Builds a tree over the graph
– Pick a source vertex to be the root
– Find (“discover”) its children, then their children, etc.

http://en.wikipedia.org/wiki/Pocket_Cube
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Jerry_Bryan__God's_Algorithm_for_the_2x2x2_Pocket_Cube.html

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 12/74

Breadth-First Search

Will associate vertex colors to guide the algorithm
– White vertices have not been discovered

● All vertices start out white

– Grey vertices are discovered but not fully explored
● They may be adjacent to white vertices

– Black vertices are discovered and fully explored
● They are adjacent only to black and gray vertices

Explore vertices by scanning adjacency list of grey
vertices

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 13/74

Breadth-First Search

BFS(G, s):
 for each v ∈ V:

v.d = ∞
v.p = NIL
v.color = WHITE

 s.d = 0
 s.color = GREY
 Q = {s} // Initialize to s

 while (Q not empty):
 u = Dequeue(Q)
 for each v ∈ u.Adj:
 if (v.color == WHITE):
 v.color = GREY
 v.d = u.d + 1
 v.p = u
 Enqueue(Q, v)
 u.color = BLACK

BFS(G, s):
 for each v ∈ V:

v.d = ∞
v.p = NIL
v.color = WHITE

 s.d = 0
 s.color = GREY
 Q = {s} // Initialize to s

 while (Q not empty):
 u = Dequeue(Q)
 for each v ∈ u.Adj:
 if (v.color == WHITE):
 v.color = GREY
 v.d = u.d + 1
 v.p = u
 Enqueue(Q, v)
 u.color = BLACK

What does v.p represent?

What does v.d represent?

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 14/74

Breadth-First Search: Example

∞

∞

∞

∞

∞

∞

∞

∞

r s t u

v w x y

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 15/74

Breadth-First Search: Example

∞

∞

0

∞

∞

∞

∞

∞

r s t u

v w x y

sQ:

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 16/74

Breadth-First Search: Example

1

∞

0

1

∞

∞

∞

∞

r s t u

v w x y

wQ: r

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 17/74

Breadth-First Search: Example

1

∞

0

1

2

2

∞

∞

r s t u

v w x y

rQ: t x

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 18/74

Breadth-First Search: Example

1

2

0

1

2

2

∞

∞

r s t u

v w x y

Q: t x v

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 19/74

Breadth-First Search: Example

1

2

0

1

2

2

3

∞

r s t u

v w x y

Q: x v u

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 20/74

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: v u y

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 21/74

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: u y

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 22/74

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: y

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 23/74

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: Ø

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 24/74

BFS(G, s):
 for each v ∈ V:

v.d = ∞
v.p = NIL
v.color = WHITE

 s.d = 0
 s.color = GREY
 Q = {s} // Initialize to s

 while (Q not empty):
 u = Dequeue(Q)
 for each v ∈ u.Adj:
 if (v.color == WHITE):
 v.color = GREY
 v.d = u.d + 1
 v.p = u
 Enqueue(Q, v)
 u.color = BLACK

BFS(G, s):
 for each v ∈ V:

v.d = ∞
v.p = NIL
v.color = WHITE

 s.d = 0
 s.color = GREY
 Q = {s} // Initialize to s

 while (Q not empty):
 u = Dequeue(Q)
 for each v ∈ u.Adj:
 if (v.color == WHITE):
 v.color = GREY
 v.d = u.d + 1
 v.p = u
 Enqueue(Q, v)
 u.color = BLACK

BFS: The Code Again

What will be the
running time?

Touch every vertex: O(V)

u = every vertex, but only once
 (Why?)

So v = every vertex
that appears in some
other vert’s adjacency
list

Total running time: O(V+E)

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 26/74

Breadth-First Search: Properties

BFS calculates the shortest-path distance to the
source node

– Shortest-path distance δ(s,v) = minimum number of
edges from s to v, or ∞ if v not reachable from s

– Proof. CLRS Ch. 22.2
– Will generalize later for weighted graphs

BFS builds breadth-first tree, in which paths to root
represent shortest paths in G

– Thus can use BFS to calculate shortest path from one
vertex to another in O(V+E) time

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 27/74

Breadth-First Tree

1

2

0

1

2

2

3

3

r s t u

v w x y

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 28/74

Breadth-First Tree

1

2

0

1

22

33

r

s

t

u

v

w

x

y

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 29/74

Depth-First Search (DFS)
● Depth-first search is another strategy for exploring

a graph:
– Explore “deeper” in the graph whenever possible
– Edges are explored out of the most recently discovered

vertex v that still has unexplored edges
– When all of v’s edges have been explored, backtrack to

the vertex from which v was discovered
● Use colors for exploring the graph

– Vertices initially colored white

– Then colored gray when discovered

– Then black when finished

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 30/74

Depth-First Search: The Code

DFS-Visit(u)
 u.color = GREY
 time = time+1
 u.d = time

 for each v ∈ u.Adj[]
 if (v.color == WHITE)
 v.p = u
 DFS_Visit(v)
 u.color = BLACK
 time = time+1
 u.f = time

DFS-Visit(u)
 u.color = GREY
 time = time+1
 u.d = time

 for each v ∈ u.Adj[]
 if (v.color == WHITE)
 v.p = u
 DFS_Visit(v)
 u.color = BLACK
 time = time+1
 u.f = time

DFS(G)
 for each vertex u ∈ V
 u.color = WHITE
 time = 0
 for each vertex u ∈ G.V
 if (u.color == WHITE)
 DFS-Visit(u)

DFS(G)
 for each vertex u ∈ V
 u.color = WHITE
 time = 0
 for each vertex u ∈ G.V
 if (u.color == WHITE)
 DFS-Visit(u)

What is u.d ?
It records the discovery of
vertex u

What is u.f ?
It records the finish of
processing vertex u

What is u.p ?
It records the parent of
vertex u

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 31/74

Depth-First Search: The Code

DFS-Visit(u)
 u.color = GREY
 time = time+1
 u.d = time

 for each v ∈ u.Adj[]
 if (v.color == WHITE)
 v.p = u
 DFS_Visit(v)
 u.color = BLACK
 time = time+1
 u.f = time

DFS-Visit(u)
 u.color = GREY
 time = time+1
 u.d = time

 for each v ∈ u.Adj[]
 if (v.color == WHITE)
 v.p = u
 DFS_Visit(v)
 u.color = BLACK
 time = time+1
 u.f = time

DFS(G)
 for each vertex u ∈ V
 u.color = WHITE
 time = 0
 for each vertex u ∈ G.V
 if (u.color == WHITE)
 DFS-Visit(u)

DFS(G)
 for each vertex u ∈ V
 u.color = WHITE
 time = 0
 for each vertex u ∈ G.V
 if (u.color == WHITE)
 DFS-Visit(u)

Will all vertices be colored
BLACK eventually?
Yes!

What if G is not connected?
DFS forest!

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 32/74

DFS Example

source
vertex

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 33/74

DFS Example

1 | | |

 | | |

 | |

source
vertex

d f

Mark as grey and explore white neighbors

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 34/74

DFS Example

1 | | |

 | | |

2 | |

source
vertex

d f

Mark as grey and explore white neighbors

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 35/74

DFS Example

1 | | |

 | | 3 |

2 | |

source
vertex

d f

No more white neighbors

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 36/74

DFS Example

1 | | |

 | | 3 | 4

2 | |

source
vertex

d f

Mark as black and backtrack

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 37/74

DFS Example

1 | | |

 | 5 | 3 | 4

2 | |

source
vertex

d f

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 38/74

DFS Example

1 | | |

 | 5 | 63 | 4

2 | |

source
vertex

d f

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 39/74

DFS Example

1 | 8 | |

 | 5 | 63 | 4

2 | 7 |

source
vertex

d f

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 40/74

DFS Example

1 | 8 | |

 | 5 | 63 | 4

2 | 7 9 |

source
vertex

d f

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 41/74

DFS Example

1 | 8 | |

 | 5 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 42/74

DFS Example

1 | 8 |11 |

 | 5 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 43/74

DFS Example

1 |12 8 |11 |

 | 5 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Nothing more to explore from the source vertex, go to another component

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 44/74

DFS Example

1 |12 8 |11 13|

 | 5 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 45/74

DFS Example

1 |12 8 |11 13|

14| 5 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 46/74

DFS Example

1 |12 8 |11 13|

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 47/74

DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 48/74

DFS Analysis

DFS-Visit(u)
 u.color = GREY
 time = time+1
 u.d = time

 for each v ∈ u.Adj[]
 if (v.color == WHITE)
 v.p = u
 DFS-Visit(v)
 u.color = BLACK
 time = time+1
 u.f = time

DFS-Visit(u)
 u.color = GREY
 time = time+1
 u.d = time

 for each v ∈ u.Adj[]
 if (v.color == WHITE)
 v.p = u
 DFS-Visit(v)
 u.color = BLACK
 time = time+1
 u.f = time

DFS(G)
 for each vertex u ∈ V
 u.color = WHITE
 time = 0
 for each vertex u ∈ G.V
 if (u.color == WHITE)
 DFS-Visit(u)

DFS(G)
 for each vertex u ∈ V
 u.color = WHITE
 time = 0
 for each vertex u ∈ G.V
 if (u.color == WHITE)
 DFS-Visit(u)

What is the running time?

Θ(V)

Θ(|u.Adj|)

How many times is DFS-Visit
called for every vertex?
Exactly once! Why?

How many times total is this
loop executed?

∑v∈V
∣v.Adj∣ = Θ(E)

Total time = Θ(E+V)

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 49/74

Depth-First Sort Analysis

● This running time argument is an informal example
of amortized analysis
– “Charge” the exploration of edge to the edge:

● Each loop iteration in DFS-Visit can be attributed to an edge in
the graph

● Runs once per edge if directed graph, twice if undirected
● Thus loop will run in O(E) time, algorithm O(V+E)
● Considered linear for graph, because adjacency list requires

O(V+E) storage

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 50/74

DFS: Kinds of edges

● DFS introduces an important distinction among
edges in the original graph:
– Tree edge: encounter new (white) vertex

● The tree edges form a spanning forest
● Can they form a cycle?

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 51/74

DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Tree edges

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 52/74

Depth-First Forest

1 |12

8 |11

13|16

14|15

5 | 63 | 4

2 | 7

9 |10

source
vertex

Depth-First Tree

Depth-First Tree

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 53/74

DFS: Kinds of edges

● DFS introduces an important distinction among
edges in the original graph:
– Tree edge: encounter new (white) vertex
– Back edge: from descendent to ancestor in DFT

● Encounter a grey vertex (grey to grey)

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 54/74

DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Tree edges Back edges

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 55/74

DFS: Kinds of edges

● DFS introduces an important distinction among
edges in the original graph:
– Tree edge: encounter new (white) vertex
– Back edge: from descendent to ancestor in DFT
– Forward edge: from ancestor to descendent in DFT

● Not a tree edge, though
● Encounters a black node (from grey to black)

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 56/74

DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Tree edges Back edges Forward edges

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 57/74

DFS: Kinds of edges

● DFS introduces an important distinction among
edges in the original graph:
– Tree edge: encounter new (white) vertex
– Back edge: from descendent to ancestor in DFT
– Forward edge: from ancestor to descendent in DFT
– Cross edge: between nodes in a tree or subtrees

● From a grey node to a black node
● nodes not ancestors of each other

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 58/74

DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Tree edges Back edges Forward edges Cross edges

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 59/74

DFS: Kinds of edges

● DFS introduces an important distinction among
edges in the original graph:
– Tree edge: encounter new (white) vertex

– Back edge: from descendent to ancestor in DFT
(encounters grey edge)

– Forward edge: from ancestor to descendent in DFT
(encounters black edge)

– Cross edge: between nodes in a tree or subtrees
(encounters black edge)

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 60/74

DFS: Kinds Of Edges

Theorem. If G is undirected, a DFS produces only
tree and back edges

Proof. Contradiction:
– Assume there’s a forward edge
– But F edge must actually be a back

edge (why?)
– It has to be discovered from d (goes to

a grey vertex)

s

 d

F

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 61/74

DFS: Kinds Of Edges

Theorem. If G is undirected, a DFS produces only
tree and back edges

Proof. Contradiction:
– Assume there’s a cross edge

– But C edge cannot be cross (why?)

– Must be explored from either u or v,
becoming a tree vertex, before other
vertex is explored

– So in fact the picture is wrong…both
lower tree edges cannot in fact be
tree edges

source

vu
C

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 62/74

DFS And Graph Cycles

Theorem: An undirected graph is acyclic iff a DFS
yields no back edges

Proof.
– If acyclic, no back edges (because a back edge implies a

cycle)
– If no back edges, acyclic

● No back edges implies only tree edges (Why?)
● Only tree edges implies we have a tree or a forest
● Which by definition is acyclic

Thus, can run DFS to find whether a graph has a cycle

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 63/74

DFS And Cycles

DFS-Visit(u)
 u.color = GREY
 time = time+1
 u.d = time

 for each v ∈ u.Adj[]
 if (v.color == WHITE)
 v.p = u
 DFS-Visit(v)
 u.color = BLACK
 time = time+1
 u.f = time

DFS-Visit(u)
 u.color = GREY
 time = time+1
 u.d = time

 for each v ∈ u.Adj[]
 if (v.color == WHITE)
 v.p = u
 DFS-Visit(v)
 u.color = BLACK
 time = time+1
 u.f = time

DFS(G)
 for each vertex u ∈ V
 u.color = WHITE
 time = 0
 for each vertex u ∈ G.V
 if (u.color == WHITE)
 DFS-Visit(u)

DFS(G)
 for each vertex u ∈ V
 u.color = WHITE
 time = 0
 for each vertex u ∈ G.V
 if (u.color == WHITE)
 DFS-Visit(u)

How would you modify the
code to detect cycles?

What's the running time?

Θ(V+E)

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 64/74

Depth First Search Applications

● Topological Sort
● Connected Components
● ...

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 65/74

Directed Acyclic Graphs

A directed acyclic graph or DAG is a directed graph
with no directed cycles:

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 66/74

DFS and DAGs

Theorem. A directed graph G is acyclic iff a DFS of G
yields no back edges

Proof.

⇒ Suppose G is acyclic and there is a back edge (u, v).
This means u is an descendant of v in the DFT. Thus G
contains a path from v to u and the edge (u,v) completes
the cycle. Contradiction.

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 67/74

DFS and DAGs

Theorem. A directed graph G is acyclic iff a DFS of G
yields no back edges

Proof.

⇐ Contrapositive. Suppose G has a cycle c. Let v be the
first vertex to be discovered in c, and let u be its
ancestor c. At time v.d, there is a path of white vertices
from v to u (on the cycle). Since DFS-Visit(v) does not
return until all vertices reachable from v are visited, the
edge (u,v) will be a back edge as u will be grey. So (u,v)
is a back edge.

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 68/74

Topological Sort

Topological sort of a DAG:
Linear ordering of all vertices in graph G such that
vertex u comes before vertex v if edge (u, v) ∈ G

Real-world example: getting dressed

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 69/74

Getting Dressed
UnderwearUnderwear SocksSocks

ShoesShoesPantsPants

BeltBelt

ShirtShirt

WatchWatch

TieTie

JacketJacket

Clothes items are ordered such that an edge (u,v) implies that
item u should be worn before item v

In what order should Mr Tidy get dressed obeying these rules?

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 70/74

Getting Dressed
UnderwearUnderwear SocksSocks

ShoesShoesPantsPants

BeltBelt

ShirtShirt

WatchWatch

TieTie

JacketJacket

SocksSocks UnderwearUnderwear PantsPants ShoesShoes WatchWatch ShirtShirt BeltBelt TieTie JacketJacket

Topological Sort

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 71/74

Topological Sort Algorithm

Topological-Sort(G)
 Run DFS(G)
 When a vertex is finished, insert to front of
 a linked list
 return linked list of vertices

Topological-Sort(G)
 Run DFS(G)
 When a vertex is finished, insert to front of
 a linked list
 return linked list of vertices

Running time: Θ(E+V). Why?

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 72/74

Correctness of Topological Sort

Claim. (u,v) ∈ G ⇒ u.f > v.f

Proof.

When (u,v) is explored, u is grey
– v = grey ⇒ (u,v) is back edge. Contradiction (Why?)

– v = white ⇒ v becomes descendent of u ⇒ v.f < u.f
(since must finish v before backtracking and finishing u)

– v = black ⇒ v already finished ⇒ v.f < u.f

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 73/74

Summary

● Breadth-First Search
– Explores the graph by discovering nodes across the breadth

– Finds shortest paths from one vertex (and all reachable
vertices)

– Produces the Breadth-First Tree

– Runs in time Θ(V+E)

● Depth-First Search
– Explores the graph by diving deeper into its depth

– Produces the Depth-First Forest

– Runs in time Θ(V+E)

Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 74/74

Recap
● Breadth First Search
● Depth First Search

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Graph Searching
	Slide 10
	Breadth-First Search
	Slide 12
	Slide 13
	Breadth-First Search: Example
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	BFS: The Code Again
	Breadth-First Search: Properties
	Slide 27
	Slide 28
	Depth-First Search
	Slide 30
	Slide 31
	DFS Example
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Depth-First Sort Analysis
	DFS: Kinds of edges
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	DFS: Kinds Of Edges
	Slide 61
	DFS And Graph Cycles
	DFS And Cycles
	Slide 64
	Directed Acyclic Graphs
	DFS and DAGs
	Slide 67
	Topological Sort
	Getting Dressed
	Slide 70
	Topological Sort Algorithm
	Correctness of Topological Sort
	Slide 73
	Slide 74

