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Graphs (review)

Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E ⊆ V × V of edges.
In an undirected graph G = (V, E), the edge 
set E consists of unordered pairs of vertices.

In either case, we have |E | = O(V 2).  Moreover, 
if G is connected, then  |E | ≥ |V | – 1, which 
implies that lg |E | = Θ(lgV).  

(Review CLRS, Appendix B.)
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Adjacency-matrix 
representation

The adjacency matrix of a graph G = (V, E), where 
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

A[i, j] =
1 if (i, j) ∈ E,
0 if (i, j) ∉ E.

22 11

33 44

A 1 2 3 4

1
2
3
4

0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 0

Θ(V 2) storage 
⇒ dense
representation.
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Adjacency-list representation

An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

22 11

33 44
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Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

22 11

33 44

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, |Adj[v] | = out-degree(v).
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Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

22 11

33 44

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, |Adj[v] | = out-degree(v).

Handshaking Lemma: ∑v∈V = 2 |E | for undirected 
graphs ⇒ adjacency lists use Θ(V + E) storage —
a sparse representation (for either type of graph).

Handshaking Lemma: ∑
v∈V 

 |Adj[v]| = 2 |E| for undirected graphs
i.e. adjacency lists use Θ(V + E) storage → a sparse representation
for either type of graph
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Graph Searching

Given: a graph G = (V, E), directed or undirected

Goal: methodically explore every vertex and every edge
or find a path from a start vertex to a desired vertex

Ultimately: build a tree on the graph
● Pick a vertex as the root
● Choose certain edges to produce a tree
● Note: might also build a forest if graph is not 

connected
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Pocket Cube
2x2x2 Rubik's cube

Goal. Starting from a given configuration, find the steps to reach
the goal configuration i.e. solve the cube.

Solution. Represent each state as a vertex in a configuration
graph, and search the graph to solve the problem.

http://en.wikipedia.org/wiki/Pocket_Cube
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Jerry_Bryan__God's_Algorithm_for_the_2x2x2_Pocket_Cube.html
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Breadth-First Search (BFS)

“Explore” a graph, turning it into a tree
– One vertex at a time
– Expand frontier of explored vertices across the breadth 

of the frontier

Builds a tree over the graph
– Pick a source vertex to be the root
– Find (“discover”) its children, then their children, etc.

http://en.wikipedia.org/wiki/Pocket_Cube
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Jerry_Bryan__God's_Algorithm_for_the_2x2x2_Pocket_Cube.html
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Breadth-First Search

Will associate vertex colors to guide the algorithm
– White vertices have not been discovered

● All vertices start out white

– Grey vertices are discovered but not fully explored
● They may be adjacent to white vertices

– Black vertices are discovered and fully explored
● They are adjacent only to black and gray vertices

Explore vertices by scanning adjacency list of grey 
vertices
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Breadth-First Search

BFS(G, s):
    for each v ∈ V:

v.d = ∞
v.p = NIL
v.color = WHITE

    s.d = 0
    s.color = GREY
    Q = {s} // Initialize to s

    while (Q not empty): 
        u = Dequeue(Q)
        for each v ∈ u.Adj:
            if (v.color == WHITE):
                v.color = GREY
                v.d = u.d + 1
                v.p = u
                Enqueue(Q, v)
        u.color = BLACK

BFS(G, s):
    for each v ∈ V:

v.d = ∞
v.p = NIL
v.color = WHITE

    s.d = 0
    s.color = GREY
    Q = {s} // Initialize to s

    while (Q not empty): 
        u = Dequeue(Q)
        for each v ∈ u.Adj:
            if (v.color == WHITE):
                v.color = GREY
                v.d = u.d + 1
                v.p = u
                Enqueue(Q, v)
        u.color = BLACK

What does v.p represent?

What does v.d represent?
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Breadth-First Search: Example

∞

∞

∞

∞

∞

∞

∞

∞

r s t u

v w x y
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Breadth-First Search: Example

∞

∞

0

∞

∞

∞

∞

∞

r s t u

v w x y

sQ:
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Breadth-First Search: Example

1

∞

0

1

∞

∞

∞

∞

r s t u

v w x y

wQ: r
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Breadth-First Search: Example

1

∞

0

1

2

2

∞

∞

r s t u

v w x y

rQ: t x
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Breadth-First Search: Example

1

2

0

1

2

2

∞

∞

r s t u

v w x y

Q: t x v
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Breadth-First Search: Example

1

2

0

1

2

2

3

∞

r s t u

v w x y

Q: x v u
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Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: v u y
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Breadth-First Search: Example

1

2

0

1
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r s t u

v w x y

Q: u y
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Breadth-First Search: Example

1
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Q: y
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Breadth-First Search: Example

1
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r s t u

v w x y

Q: Ø
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BFS(G, s):
    for each v ∈ V:

v.d = ∞
v.p = NIL
v.color = WHITE

    s.d = 0
    s.color = GREY
    Q = {s} // Initialize to s

    while (Q not empty): 
        u = Dequeue(Q)
        for each v ∈ u.Adj:
            if (v.color == WHITE):
                v.color = GREY
                v.d = u.d + 1
                v.p = u
                Enqueue(Q, v)
        u.color = BLACK

BFS(G, s):
    for each v ∈ V:

v.d = ∞
v.p = NIL
v.color = WHITE

    s.d = 0
    s.color = GREY
    Q = {s} // Initialize to s

    while (Q not empty): 
        u = Dequeue(Q)
        for each v ∈ u.Adj:
            if (v.color == WHITE):
                v.color = GREY
                v.d = u.d + 1
                v.p = u
                Enqueue(Q, v)
        u.color = BLACK

BFS: The Code Again

What will be the 
running time?

Touch every vertex: O(V)

u = every vertex, but only once
                                  (Why?)

So v = every vertex 
that appears in some 
other vert’s adjacency 
list

Total running time: O(V+E)
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Breadth-First Search: Properties

BFS calculates the shortest-path distance to the 
source node

– Shortest-path distance δ(s,v) = minimum number of 
edges from s to v, or ∞ if v not reachable from s

– Proof. CLRS Ch. 22.2
– Will generalize later for weighted graphs

BFS builds breadth-first tree, in which paths to root 
represent shortest paths in G

– Thus can use BFS to calculate shortest path from one 
vertex to another in O(V+E) time
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Breadth-First Tree

1
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Breadth-First Tree

1
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Depth-First Search (DFS)
● Depth-first search is another strategy for exploring 

a graph:
– Explore “deeper” in the graph whenever possible
– Edges are explored out of the most recently discovered 

vertex v that still has unexplored edges
– When all of v’s edges have been explored, backtrack to 

the vertex from which v was discovered
● Use colors for exploring the graph

– Vertices initially colored white

– Then colored gray when discovered

– Then black when finished
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Depth-First Search: The Code

DFS-Visit(u)
   u.color = GREY
   time = time+1
   u.d = time

   for each v ∈ u.Adj[]
      if (v.color == WHITE)
         v.p = u  
         DFS_Visit(v)
   u.color = BLACK
   time = time+1
   u.f = time

DFS-Visit(u)
   u.color = GREY
   time = time+1
   u.d = time

   for each v ∈ u.Adj[]
      if (v.color == WHITE)
         v.p = u  
         DFS_Visit(v)
   u.color = BLACK
   time = time+1
   u.f = time

DFS(G)
   for each vertex u ∈ V
      u.color = WHITE
   time = 0
   for each vertex u ∈ G.V
      if (u.color == WHITE)
         DFS-Visit(u)

DFS(G)
   for each vertex u ∈ V
      u.color = WHITE
   time = 0
   for each vertex u ∈ G.V
      if (u.color == WHITE)
         DFS-Visit(u)

What is u.d ?
It records the discovery of
vertex u

What is u.f ?
It records the finish of
processing vertex u

What is u.p ?
It records the parent of
vertex u
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Depth-First Search: The Code

DFS-Visit(u)
   u.color = GREY
   time = time+1
   u.d = time

   for each v ∈ u.Adj[]
      if (v.color == WHITE)
         v.p = u  
         DFS_Visit(v)
   u.color = BLACK
   time = time+1
   u.f = time

DFS-Visit(u)
   u.color = GREY
   time = time+1
   u.d = time

   for each v ∈ u.Adj[]
      if (v.color == WHITE)
         v.p = u  
         DFS_Visit(v)
   u.color = BLACK
   time = time+1
   u.f = time

DFS(G)
   for each vertex u ∈ V
      u.color = WHITE
   time = 0
   for each vertex u ∈ G.V
      if (u.color == WHITE)
         DFS-Visit(u)

DFS(G)
   for each vertex u ∈ V
      u.color = WHITE
   time = 0
   for each vertex u ∈ G.V
      if (u.color == WHITE)
         DFS-Visit(u)

Will all vertices be colored
BLACK eventually?
Yes!

What if G is not connected?
DFS forest!
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DFS Example

source
vertex
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DFS Example

1 |    |    |  

  |   |  |  

  |    |  

source
vertex

d      f

Mark as grey and explore white neighbors
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DFS Example

1 |    |    |  

  |   |  |  

2 |    |  

source
vertex

d      f

Mark as grey and explore white neighbors
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DFS Example

1 |    |    |  

  |   | 3 |  

2 |    |  

source
vertex

d      f

No more white neighbors
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DFS Example

1 |    |    |  

  |   | 3 | 4

2 |    |  

source
vertex

d      f

Mark as black and backtrack
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DFS Example

1 |    |    |  

  |  5 |  3 | 4

2 |    |  

source
vertex

d      f
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DFS Example

1 |    |    |  

  |  5 | 63 | 4

2 |    |  

source
vertex

d      f
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DFS Example

1 |  8 |    |  

  |  5 | 63 | 4

2 | 7   |  

source
vertex

d      f
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DFS Example

1 |  8 |    |  

  |  5 | 63 | 4

2 | 7 9 |  

source
vertex

d      f
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DFS Example

1 |  8 |    |  

  |  5 | 63 | 4

2 | 7 9 |10

source
vertex

d      f
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DFS Example

1 |  8 |11   |  

  |  5 | 63 | 4

2 | 7 9 |10

source
vertex

d      f
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DFS Example

1 |12 8 |11   |  

  |  5 | 63 | 4

2 | 7 9 |10

source
vertex

d      f

Nothing more to explore from the source vertex, go to another component
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DFS Example

1 |12 8 |11 13|  

  |  5 | 63 | 4

2 | 7 9 |10

source
vertex

d      f
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DFS Example

1 |12 8 |11 13|  

14|  5 | 63 | 4

2 | 7 9 |10

source
vertex

d      f
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DFS Example

1 |12 8 |11 13|  

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d      f



Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 47/74

DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d      f



Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 48/74

DFS Analysis

DFS-Visit(u)
   u.color = GREY
   time = time+1
   u.d = time

   for each v ∈ u.Adj[]
      if (v.color == WHITE)
         v.p = u  
         DFS-Visit(v)
   u.color = BLACK
   time = time+1
   u.f = time

DFS-Visit(u)
   u.color = GREY
   time = time+1
   u.d = time

   for each v ∈ u.Adj[]
      if (v.color == WHITE)
         v.p = u  
         DFS-Visit(v)
   u.color = BLACK
   time = time+1
   u.f = time

DFS(G)
   for each vertex u ∈ V
      u.color = WHITE
   time = 0
   for each vertex u ∈ G.V
      if (u.color == WHITE)
         DFS-Visit(u)

DFS(G)
   for each vertex u ∈ V
      u.color = WHITE
   time = 0
   for each vertex u ∈ G.V
      if (u.color == WHITE)
         DFS-Visit(u)

What is the running time?

Θ(V)

Θ(|u.Adj|)

How many times is DFS-Visit 
called for every vertex?
Exactly once! Why?

How many times total is this 
loop executed?

∑v∈V
∣v.Adj∣ = Θ(E)

Total time = Θ(E+V)
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Depth-First Sort Analysis

● This running time argument is an informal example 
of amortized analysis
– “Charge” the exploration of edge to the edge:

● Each loop iteration in DFS-Visit can be attributed to an edge in 
the graph 

● Runs once per edge if directed graph, twice if undirected
● Thus loop will run in O(E) time, algorithm O(V+E)
● Considered linear for graph, because adjacency list requires 

O(V+E) storage
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DFS: Kinds of edges

● DFS introduces an important distinction among 
edges in the original graph:
– Tree edge: encounter new (white) vertex 

● The tree edges form a spanning forest
● Can they form a cycle?
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DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d      f

Tree edges
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Depth-First Forest

1 |12

8 |11

13|16

14|15

5 | 63 | 4

2 | 7

9 |10

source
vertex

Depth-First Tree

Depth-First Tree
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DFS: Kinds of edges

● DFS introduces an important distinction among 
edges in the original graph:
– Tree edge: encounter new (white) vertex 
– Back edge: from descendent to ancestor in DFT

● Encounter a grey vertex (grey to grey)
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DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d      f

Tree edges Back edges
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DFS: Kinds of edges

● DFS introduces an important distinction among 
edges in the original graph:
– Tree edge: encounter new (white) vertex 
– Back edge: from descendent to ancestor in DFT
– Forward edge: from ancestor to descendent in DFT

● Not a tree edge, though
● Encounters a black node (from grey to black)
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DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d      f

Tree edges Back edges Forward edges



Mohamed Aly – CMP302 Fall 2013 Computer Engineering, Cairo University 57/74

DFS: Kinds of edges

● DFS introduces an important distinction among 
edges in the original graph:
– Tree edge: encounter new (white) vertex 
– Back edge: from descendent to ancestor in DFT
– Forward edge: from ancestor to descendent in DFT
– Cross edge: between nodes in a tree or subtrees

● From a grey node to a black node
● nodes not ancestors of each other
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DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d      f

Tree edges Back edges Forward edges Cross edges
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DFS: Kinds of edges

● DFS introduces an important distinction among 
edges in the original graph:
– Tree edge: encounter new (white) vertex 

– Back edge: from descendent to ancestor in DFT 
(encounters grey edge)

– Forward edge: from ancestor to descendent in DFT 
(encounters black edge)

– Cross edge: between nodes in a tree or subtrees 
(encounters black edge)
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DFS: Kinds Of Edges

Theorem. If G is undirected, a DFS produces only 
tree and back edges

Proof. Contradiction:
– Assume there’s a forward edge
– But F edge must actually be a back 

edge (why?)
– It has to be discovered from d (goes to

a grey vertex)

s

 d

F
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DFS: Kinds Of Edges

Theorem. If G is undirected, a DFS produces only 
tree and back edges

Proof. Contradiction:
– Assume there’s a cross edge

– But C edge cannot be cross (why?)

– Must be explored from either u or v, 
becoming a tree vertex, before other 
vertex is explored

– So in fact the picture is wrong…both
lower tree edges cannot in fact be
tree edges

source

vu
C
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DFS And Graph Cycles

Theorem: An undirected graph is acyclic iff a DFS 
yields no back edges

Proof. 
– If acyclic, no back edges (because a back edge implies a 

cycle)
– If no back edges, acyclic

● No back edges implies only tree edges (Why?)
● Only tree edges implies we have a tree or a forest
● Which by definition is acyclic

Thus, can run DFS to find whether a graph has a cycle
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DFS And Cycles

DFS-Visit(u)
   u.color = GREY
   time = time+1
   u.d = time

   for each v ∈ u.Adj[]
      if (v.color == WHITE)
         v.p = u  
         DFS-Visit(v)
   u.color = BLACK
   time = time+1
   u.f = time

DFS-Visit(u)
   u.color = GREY
   time = time+1
   u.d = time

   for each v ∈ u.Adj[]
      if (v.color == WHITE)
         v.p = u  
         DFS-Visit(v)
   u.color = BLACK
   time = time+1
   u.f = time

DFS(G)
   for each vertex u ∈ V
      u.color = WHITE
   time = 0
   for each vertex u ∈ G.V
      if (u.color == WHITE)
         DFS-Visit(u)

DFS(G)
   for each vertex u ∈ V
      u.color = WHITE
   time = 0
   for each vertex u ∈ G.V
      if (u.color == WHITE)
         DFS-Visit(u)

How would you modify the
code to detect cycles?

What's the running time?

Θ(V+E)
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Depth First Search Applications

● Topological Sort
● Connected Components
● ...
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Directed Acyclic Graphs

A directed acyclic graph or DAG is a directed graph 
with no directed cycles:
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DFS and DAGs

Theorem. A directed graph G is acyclic iff a DFS of G 
yields no back edges

Proof.

⇒ Suppose G is acyclic and there is a back edge (u, v). 
This means u is an descendant of v in the DFT. Thus G 
contains a path from v to u and the edge (u,v) completes 
the cycle. Contradiction.
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DFS and DAGs

Theorem. A directed graph G is acyclic iff a DFS of G 
yields no back edges

Proof.

⇐ Contrapositive. Suppose G has a cycle c. Let v be the 
first vertex to be discovered in c, and let u be its 
ancestor c. At time v.d, there is a path of white vertices 
from v to u (on the cycle). Since DFS-Visit(v) does not 
return until all vertices reachable from v are visited, the 
edge (u,v) will be a back edge as u will be grey. So (u,v) 
is a back edge.
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Topological Sort

Topological sort of a DAG:
Linear ordering of all vertices in graph G such that 
vertex u comes before vertex v if edge (u, v) ∈ G

Real-world example: getting dressed
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Getting Dressed
UnderwearUnderwear SocksSocks

ShoesShoesPantsPants

BeltBelt

ShirtShirt

WatchWatch

TieTie

JacketJacket

Clothes items are ordered such that an edge (u,v) implies that 
item u should be worn before item v

In what order should Mr Tidy get dressed obeying these rules?
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Getting Dressed
UnderwearUnderwear SocksSocks

ShoesShoesPantsPants

BeltBelt

ShirtShirt

WatchWatch

TieTie

JacketJacket

SocksSocks UnderwearUnderwear PantsPants ShoesShoes WatchWatch ShirtShirt BeltBelt TieTie JacketJacket

Topological Sort
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Topological Sort Algorithm

Topological-Sort(G)
  Run DFS(G)
  When a vertex is finished, insert to front of 
    a linked list
  return linked list of vertices

Topological-Sort(G)
  Run DFS(G)
  When a vertex is finished, insert to front of 
    a linked list
  return linked list of vertices

Running time: Θ(E+V). Why?
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Correctness of Topological Sort

Claim. (u,v) ∈ G ⇒ u.f  >  v.f

Proof.

When (u,v) is explored, u is grey
– v = grey ⇒ (u,v) is back edge.  Contradiction (Why?)

– v = white ⇒ v becomes descendent of u ⇒ v.f < u.f 
(since must finish v before backtracking and finishing u)

– v = black ⇒ v already finished ⇒ v.f < u.f
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Summary

● Breadth-First Search
– Explores the graph by discovering nodes across the breadth

– Finds shortest paths from one vertex (and all reachable 
vertices)

– Produces the Breadth-First Tree

– Runs in time Θ(V+E)

● Depth-First Search
– Explores the graph by diving deeper into its depth 

– Produces the Depth-First Forest

– Runs in time Θ(V+E)
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Recap
● Breadth First Search
● Depth First Search
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