CMP302: Algorithms

Lecture 14: Breadth First Search and Depth First Search

Mohamed Alaa El-Dien Aly Computer Engineering Department Cairo University Fall 2013

Agenda

- Breadth First Search
- Depth First Search

Acknowledgment

A lot of slides adapted from the slides of David Luebke, Erik Demaine, and Charles Leiserson.

Mohamed Aly – CMP302 Fall 2013

Graphs (review)

Definition. A *directed graph (digraph)* G = (V, E) is an ordered pair consisting of

- a set *V* of *vertices* (singular: *vertex*),
- a set $E \subseteq V \times V$ of *edges*.

In an *undirected graph* G = (V, E), the edge set *E* consists of *unordered* pairs of vertices.

In either case, we have $|E| = O(V^2)$. Moreover, if *G* is connected, then $|E| \ge |V| - 1$, which implies that $\lg |E| = \Theta(\lg V)$.

(Review CLRS, Appendix B.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.2

Mohamed Aly – CMP302 Fall 2013

Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

November 9, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.4

Mohamed Aly – CMP302 Fall 2013

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

$$Adj[1] = \{2, 3\}$$

 $Adj[2] = \{3\}$
 $Adj[3] = \{\}$
 $Adj[4] = \{3\}$

November 9, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.5

Mohamed Aly – CMP302 Fall 2013

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

 $Adj[1] = \{2, 3\}$ $Adj[2] = \{3\}$ $Adj[3] = \{\}$ $Adj[4] = \{3\}$

For undirected graphs, |Adj[v]| = degree(v). For digraphs, |Adj[v]| = out-degree(v).

November 9, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.6

Mohamed Aly – CMP302 Fall 2013

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

 $Adj[1] = \{2, 3\}$ $Adj[2] = \{3\}$ $Adj[3] = \{\}$ $Adj[4] = \{3\}$

For undirected graphs, |Adj[v]| = degree(v). For digraphs, |Adj[v]| = out-degree(v).

Handshaking Lemma: $\sum_{v \in V} |Adj[v]| = 2 |E|$ for undirected graphs i.e. adjacency lists use $\Theta(V + E)$ storage \rightarrow a sparse representation for either type of graph

November 9, 2005Copyright © 2001-5 by Erik D. Demaine and Charles E. LeisersonL16.7

Mohamed Aly – CMP302 Fall 2013

Graph Searching

Given: a graph G = (V, E), directed or undirected

Goal: methodically explore every vertex and every edge *or* find a path from a *start* vertex to a *desired* vertex

Ultimately: build a tree on the graph

- Pick a vertex as the root
- Choose certain edges to produce a tree
- Note: might also build a *forest* if graph is not connected

Pocket Cube

2x2x2 Rubik's cube

Goal. Starting from a given configuration, find the steps to reach the goal configuration i.e. solve the cube.

Solution. Represent each *state* as a vertex in a configuration graph, and *search* the graph to solve the problem.

http://en.wikipedia.org/wiki/Pocket_Cube

http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Jerry_Bryan_God's_Algorithm_for_the_2x2x2_Pocket_Cube.html

Mohamed Aly – CMP302 Fall 2013

Breadth-First Search (BFS)

- "Explore" a graph, turning it into a tree
- One vertex at a time
- Expand *frontier* of explored vertices across the *breadth* of the frontier

Builds a tree over the graph

- Pick a *source vertex* to be the root
- Find ("*discover*") its children, then their children, etc.

Breadth-First Search

Will associate vertex *colors* to guide the algorithm

- *White* vertices have not been discovered
 - All vertices start out white
- *Grey* vertices are discovered but not fully explored
 - They may be adjacent to white vertices
- *Black* vertices are discovered and fully explored
 - They are adjacent only to black and gray vertices

Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search

```
BFS(G, s):
    for each v \in V:
       v \cdot d = \infty
       v.p = NIL
       v.color = WHITE
    s.d = 0
    s.color = GREY
            // Initialize to s
    O = \{s\}
    while (Q not empty):
        u = Dequeue(Q)
                                              What does v.d represent?
         for each v \in u.Adj:
                                              What does v.p represent?
             if (v.color == WHITE):
                 v.color = GREY
                 v.d = u.d + 1
                 v.p = u
                 Enqueue (Q, v)
        u.color = BLACK
```

Mohamed Aly – CMP302 Fall 2013

Q: S

Mohamed Aly – CMP302 Fall 2013

Mohamed Aly – CMP302 Fall 2013

<i>Q</i> : <i>r</i>	t	x
---------------------	---	---

Mohamed Aly – CMP302 Fall 2013

<i>Q</i> : <i>t</i>	x	V
---------------------	---	---

Mohamed Aly – CMP302 Fall 2013

Q: x	v	u
------	---	---

Mohamed Aly – CMP302 Fall 2013

<i>Q</i> : <i>v</i>	U	у
---------------------	---	---

Mohamed Aly – CMP302 Fall 2013

Mohamed Aly – CMP302 Fall 2013

Mohamed Aly – CMP302 Fall 2013

Q: Ø

Mohamed Aly – CMP302 Fall 2013

BFS: The Code Again

Total running time: O(V+E)

Mohamed Aly – CMP302 Fall 2013

Breadth-First Search: Properties

BFS calculates the *shortest-path distance* to the source node

- Shortest-path distance $\delta(s,v)$ = minimum number of edges from *s* to *v*, or ∞ if *v* not reachable from *s*
- Proof. CLRS Ch. 22.2
- Will generalize later for *weighted* graphs

BFS builds *breadth-first tree*, in which paths to *root* represent shortest paths in **G**

- Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time

Mohamed Aly – CMP302 Fall 2013

Breadth-First Tree

Breadth-First Tree

Depth-First Search (DFS)

- *Depth-first search* is another strategy for exploring a graph:
 - Explore "*deeper*" in the graph whenever possible
 - Edges are explored out of the most recently discovered vertex v that still has unexplored edges
 - When all of v's edges have been explored, backtrack to the vertex from which v was discovered
- Use *colors* for exploring the graph
 - Vertices initially colored *white*
 - Then colored *gray* when discovered
 - Then *black* when finished

Mohamed Aly – CMP302 Fall 2013

Depth-First Search: The Code

```
DFS(G)
for each vertex u \in V
u.color = WHITE
time = 0
for each vertex u \in G.V
if (u.color == WHITE)
DFS-Visit(u)
```

```
DFS-Visit(u)
u.color = GREY
time = time+1
u.d = time
for each v ∈ u.Adj[]
if (v.color == WHITE)
v.p = u
DFS_Visit(v)
u.color = BLACK
time = time+1
u.f = time
```

What is *u.d*? It records the *discovery* of vertex *u*

What is *u.f*? It records the *finish* of processing vertex *u*

What is *u.p* ? It records the *parent* of vertex *u*

Mohamed Aly – CMP302 Fall 2013

Depth-First Search: The Code

```
DFS(G)
for each vertex u \in V
u.color = WHITE
time = 0
for each vertex u \in G.V
if (u.color == WHITE)
DFS-Visit(u)
```

```
DFS-Visit(u)
u.color = GREY
time = time+1
u.d = time
for each v ∈ u.Adj[]
if (v.color == WHITE)
v.p = u
DFS_Visit(v)
u.color = BLACK
time = time+1
u.f = time
```

Will all vertices be colored BLACK eventually? Yes!

What if G is *not* connected? DFS forest!

Mohamed Aly – CMP302 Fall 2013

Mohamed Aly – CMP302 Fall 2013

Mark as grey and explore white neighbors

Mohamed Aly – CMP302 Fall 2013

Mark as grey and explore white neighbors

Mohamed Aly – CMP302 Fall 2013

No more *white* neighbors

Mohamed Aly – CMP302 Fall 2013

Mark as *black* and backtrack

Mohamed Aly – CMP302 Fall 2013

Nothing more to explore from the *source vertex*, go to another *component*

Mohamed Aly – CMP302 Fall 2013

Mohamed Aly – CMP302 Fall 2013

Mohamed Aly – CMP302 Fall 2013

DFS Analysis

Mohamed Aly – CMP302 Fall 2013

Depth-First Sort Analysis

- This running time argument is an informal example of *amortized analysis*
 - "Charge" the exploration of edge to the edge:
 - Each loop iteration in DFS-Visit can be attributed to an edge in the graph
 - Runs once per edge if directed graph, twice if undirected
 - Thus loop will run in O(E) time, algorithm O(V+E)
 - Considered linear for graph, because adjacency list requires
 O(V+E) storage

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - The tree edges form a spanning forest
 - Can they form a *cycle*?

Tree edges

Mohamed Aly – CMP302 Fall 2013

Depth-First Forest

Depth-First Tree

Depth-First Tree

Mohamed Aly – CMP302 Fall 2013

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (*white*) vertex
 - *Back edge*: from descendent to ancestor in DFT
 - Encounter a *grey* vertex (*grey* to *grey*)

Tree edges Back edges

Mohamed Aly – CMP302 Fall 2013

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (*white*) vertex
 - *Back edge*: from descendent to ancestor in DFT
 - *Forward edge*: from ancestor to descendent in DFT
 - Not a tree edge, though
 - Encounters a *black* node (from *grey* to *black*)

Tree edges Back edges Forward edges

Mohamed Aly – CMP302 Fall 2013

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (*white*) vertex
 - *Back edge*: from descendent to ancestor in DFT
 - *Forward edge*: from ancestor to descendent in DFT
 - *Cross edge*: between nodes in a tree or subtrees
 - From a *grey* node to a *black* node
 - nodes not ancestors of each other

Tree edges Back edges Forward edges Cross edges

Mohamed Aly – CMP302 Fall 2013

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (*white*) vertex
 - *Back edge*: from descendent to ancestor in DFT (encounters *grey* edge)
 - *Forward edge*: from ancestor to descendent in DFT (encounters *black* edge)
 - *Cross edge*: between nodes in a tree or subtrees (encounters *black* edge)

DFS: Kinds Of Edges

Theorem. If G is undirected, a DFS produces only *tree* and *back* edges

Proof. Contradiction:

- Assume there's a forward edge
- But *F* edge must actually be a back edge (*why?*)
- It has to be discovered from *d* (goes to a *grey* vertex)

DFS: Kinds Of Edges

Theorem. If G is undirected, a DFS produces only *tree* and *back* edges

Proof. Contradiction:

- Assume there's a cross edge
- But *C* edge cannot be cross (*why*?)
- Must be explored from either *u* or *v*, becoming a tree vertex, before other vertex is explored
- So in fact the picture is wrong...both lower tree edges cannot in fact be tree edges

Mohamed Aly – CMP302 Fall 2013

SOURCE

U

DFS And Graph Cycles

Theorem: An undirected graph is *acyclic* iff a DFS yields no back edges

Proof.

- If acyclic, no back edges (because a back edge implies a cycle)
- If no back edges, acyclic
 - No back edges implies only tree edges (*Why?*)
 - Only tree edges implies we have a tree or a forest
 - Which by definition is acyclic

Thus, can run DFS to find whether a graph has a cycle

Mohamed Aly – CMP302 Fall 2013

DFS And Cycles

```
DFS(G)
for each vertex u \in V
u.color = WHITE
time = 0
for each vertex u \in G.V
if (u.color == WHITE)
DFS-Visit(u)
```

How would you modify the code to detect cycles?

```
DFS-Visit(u)
u.color = GREY
time = time+1
u.d = time
for each v ∈ u.Adj[]
if (v.color == WHITE)
v.p = u
DFS-Visit(v)
u.color = BLACK
time = time+1
u.f = time
```

What's the running time? $\Theta(V+E)$

Mohamed Aly – CMP302 Fall 2013

Depth First Search Applications

- Topological Sort
- Connected Components

Directed Acyclic Graphs

A *directed acyclic graph* or *DAG* is a directed graph with no directed cycles:

DFS and DAGs

Theorem. A directed graph G is *acyclic* iff a DFS of G yields no *back* edges

Proof.

⇒ Suppose G is *acyclic* and there is a *back* edge (u, v). This means u is an descendant of v in the DFT. Thus G contains a path from v to u and the edge (u,v) completes the cycle. Contradiction.

DFS and DAGs

Theorem. A directed graph G is *acyclic* iff a DFS of G yields no *back* edges

Proof.

⇐ Contrapositive. Suppose G has a cycle c. Let v be the first vertex to be discovered in c, and let u be its ancestor c. At time v.d, there is a path of white vertices from v to u (on the cycle). Since DFS-Visit(v) does not return until all vertices reachable from v are visited, the edge (u,v) will be a back edge as u will be grey. So (u,v) is a back edge.

Mohamed Aly – CMP302 Fall 2013

Topological Sort

Topological sort of a DAG: Linear ordering of all vertices in graph G such that vertex u comes before vertex v if edge $(u, v) \in G$

Real-world example: getting dressed

Getting Dressed

Watch

Clothes items are ordered such that an edge (u,v) implies that item u should be worn *before* item v

In what order should Mr Tidy get dressed obeying these rules?

Mohamed Aly – CMP302 Fall 2013

Getting Dressed

Watch

Mohamed Aly – CMP302 Fall 2013

Socks

Computer Engineering, Cairo University

Jacket

->

Topological Sort Algorithm

```
Topological-Sort(G)
```

```
Run DFS(G)
```

When a vertex is finished, insert to front of

a linked list

```
return linked list of vertices
```

Running time: $\Theta(E+V)$. Why?

Mohamed Aly – CMP302 Fall 2013

Correctness of Topological Sort

Claim. $(u,v) \in G \Rightarrow u.f > v.f$

Proof.

When (u, v) is explored, u is grey $-v = grey \Rightarrow (u, v)$ is back edge. Contradiction (Why?)

- $v = white \Rightarrow v$ becomes descendent of $u \Rightarrow v.f < u.f$ (since must finish v before backtracking and finishing u)
- $v = black \Rightarrow v$ already finished $\Rightarrow v.f < u.f$

Mohamed Aly – CMP302 Fall 2013

Summary

- Breadth-First Search
 - Explores the graph by discovering nodes across the breadth
 - Finds shortest paths from one vertex (and all reachable vertices)
 - Produces the Breadth-First Tree
 - Runs in time $\Theta(V+E)$
- Depth-First Search
 - Explores the graph by diving deeper into its depth
 - Produces the Depth-First Forest
 - Runs in time $\Theta(V+E)$

Recap

- Breadth First Search
- Depth First Search