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Agenda
● Phrases from Alignments
● Phrase-Based Models
● Decoding in Phrase-Based Models
● Evaluation

Acknowledgment:
Most slides adapted from Michael Collins NLP class on Coursera.

http://www.coursera.org/
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Recall: IBM Model 1
English sentence e has l words e

1
, … , e

l

French sentence f  has m words f
1
, …, f

m

An alignment a identifies the source of each french word

● Final Model:

p( f , a |e , m)= p(a |e , m) p( f | a ,e ,m)=
1

(l+1)m
∏i=1

m
t ( f i |eai

)
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Recall: IBM Model 1 Example

p( f | a ,e , m)
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Recall: IBM Model 2
● Only difference: alignment or distortion parameters

Probability that jth French word is connected to ith English
word, given sentence lengths of e and f are l and m

● Define

where a = {a
1
, …, a

m
}

● The final result for IBM Model 2:

p( f , a |e , m)=∏i=1

m
q(ai | i , l ,m) t ( f i |ea i

)

p(a |e , m)=∏i=1

m
q(a i | i , l ,m)

q( j | i , l , m)
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Recall: IBM Model 2 Example
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Recall: IBM Model 2 Example
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Recall: Recovering Alignments
● If we have estimates for the parameters q and t, we can easily 

recover the most likely alignment for any sentence pair

● Given a sentence pair e
1
, e

2
, …, e

l
 and f

1
, …, f

m
, define 

for i = 1, …, m

ai=argmaxa∈{0, ... , l }q(a | i , l ,m)t ( f i |ea)
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Recall: EM Algorithm
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Recall: EM Algorithm
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Summary
● IBM Models 1 & 2 not used for translation but for 

recovering alignments
● Training done with the EM Algorithm (homework)
● Alignments used to extract phrases in Phrase-Based 

Models
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Phrase-Based Models
● First stage in training a phrase-based model is 

extraction of a phrase-based (PB) lexicon
● A PB lexicon pairs strings in one language with strings 

in another language, e.g.,

– nach Kanada ↔ in Canada
– zur Konferenz ↔ to the conference
– Morgen ↔ tomorrow
– fliege ↔ will fly
– …



Mohamed Aly – CMP462 Spring 2014 Computer Engineering, Cairo University 13/58

An Example (from tutorial by Koehn and Knight)
● A training example (Spanish/English sentence pair):

      Spanish: Maria no daba una bofetada a la bruja verde

      English: Mary did not slap the green witch

● Some (not all) phrase pairs extracted from this example:

      (Maria ↔ Mary), (bruja ↔ witch), (verde ↔ green),

      (no ↔ did not), (no daba una bofetada ↔ did not slap),

      (daba una bofetada a la ↔ slap the)

● We'll see how to do this using alignments from the IBM models (e.g., 
from IBM model 2):

1. Extract alignments

2. Extract phrase pairs
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Alignment Matrix
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Alignment Matrix

● Two problems with these alignments:

1. They are often noisy

2. They are only many-to-one i.e. each Spanish word is aligned 
to only one English word
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Finding Better Alignments
● Step 1: train IBM model 2 for p(f | e), and come up with 

most likely alignment for each (e, f) pair
● Step 2: train IBM model 2 for p(e | f) and come up with 

most likely alignment for each (e, f) pair
● Step 3: take intersection of the two alignments as a 

starting point
● Step 4: grow the alignments using heuristics
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Better Alignments: Step 1
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Better Alignments: Step 2
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Better Alignments: Step 3

Take the intersection
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Better Alignments: Step 3

The intersection has been found to be a very reliable starting point
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Better Alignments: Step 4
● Heuristics for growing the alignments:

– Only explore alignment in union of p(f | e) and p(e | f) 
alignments

– Add one alignment point at a time
– Only add alignment points which align a word that currently 

has no alignment
– At first, restrict ourselves to alignment points that are 

“neighbors” (adjacent or diagonal) of current alignment 
points

– Later, consider other alignment points
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Better Alignments: Step 4

Final alignments

Note: the alignments are no longer many-to-one, but may be now 
many-to-many, since some Spanish words can be aligned to more 
one English word, and vice versa.
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Extracting Phrase Pairs
● A phrase pair consists of a sequence of English words e 

paired with a sequence of foreign words f

● A phrase pair (e, f) is consistent if:

1. At least one word in e is aligned with a word in f 

2. No word in f is aligned to a word outside e  

3. No word in e is aligned to a word outside f 

● Extract all consistent pairs from a training example
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Extracting Phrase Pairs

● A phrase pair (e, f) is consistent if:

1. At least one word in e is aligned with a word in f 

2. No word in f is aligned to a word outside e  

3. No word in e is aligned to a word outside f 

(Mary did ↔ Maria no) is inconsistent
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Extracting Phrase Pairs

● A phrase pair (e, f) is consistent if:

1. At least one word in e is aligned with a word in f 

2. No word in f is aligned to a word outside e  

3. No word in e is aligned to a word outside f 

(Mary did not ↔ Maria no) is consistent
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Extracting Phrase Pairs

● A phrase pair (e, f) is consistent if:

1. At least one word in e is aligned with a word in f 

2. No word in f is aligned to a word outside e  

3. No word in e is aligned to a word outside f 

Extract all consistent phrase pairs
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Phrase Pair Probabilities
● For any phrase pair (f, e) extracted from the training 

data, we can calculate:

● For example:

t ( f | e)=
Count ( f , e)

Count (e)

t (daba una bofetada | slap)=
Count(daba una bofetada, slap)

Count(slap)

Number of times f was aligned
to e 

Number of times e appeared
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Example Phrase Translation Table

An example from Koehn, EACL 2006 tutorial. 
Note that we have t(e|f) not t(f|e) in this example.
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Phrase-Based Systems
● We want to translate from a Foreign language to English
● Translation is done by choosing a sequence of phrases from 

the foreign language and outputting their equivalent in English
● Each choice of a phrase has a score with three components:

1. Language model: e.g. a Trigram English model, that measures 
the correctness of the resulting English

2. Phrase model: that measures the correctness of the chosen 
phrase pairs

3. Distortion model: that enforces the order of words taken from 
the foreign language (usually negative)

log q (v | t , u)

log t ( f |e)

η×skip
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Example

Choosing the phrase pair (Heute, Today) has this score

Start Symbols

We did not skip any words 
in German
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Example

Choosing the phrase pair (werden wir, we shall be) has this score
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Example

Choosing the phrase pair (diskutieren, debating) has this score

We skipped 6 words in German and
chose “diskutieren” instead of 
the next word “uber”
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Example

Choosing the phrase pair (uber die Wiederreroffnung, the reopening)

Choosing the phrase pair (des Mont-Blanc-Tunnels, of the Mont Blanc tunnel)
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Phrase-Based Models
● Make a sequence of choices from phrases in the 

foreign language to phrases in the English language
● Each choice of phrase pair has a score

● Decoding Algorithm: Find the sequence of phrase pairs 
y that maximizes the resulting score

● There are possibly exponential number of possible 
sequences to choose from
– Find approximate solution using, e.g., Beam Search (next)
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Phrase-Based Models: Definitions

● Phrase-based Lexicon contains entries (f, e) like 
– (wir müssen, we must)

– (wir, we)

– (wir müssen auch, we must also)

● Each entry has a score g(f, e), e.g.

● A trigram model, with parameters q(t | u, v), e.g. q(also | we must)

● A distortion parameter η

wir müssen auch diese kritik ernst nehmen
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Phrase-Based Models: Definitions

● A phrase p is a tuple (s, t, e) that signifies that the foreign 
sequence of words f

s
, f

s+1
, …, f

t
 can be translated as the English 

sentence e using an entry from the PB lexicon. Example:
– (1, 2, we must)

– (1, 1, we)

– (1, 3, we must also)

● P  is the set of all phrases for a sentence

● For any phrase p:

– s(p), t(p), and  e(p) are its components.

– g(p) is its score

wir müssen auch diese kritik ernst nehmen
  1        2            3   4 5        6            7
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Phrase-Based Models: Definitions

● A derivation y is a finite sequence of phrases p
1
 … p

L
 where 

each p
i
 is a member of the set P

● For any derivation y we use e(y) as its underlying English translation

● For example:
y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)

and

● e(y) = we must also take this criticism seriously

wir müssen auch diese kritik ernst nehmen
  1        2            3   4 5        6            7
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Phrase-Based Models: Definitions

● The set of all valid derivations Y (f) where f = f
1
 … f

n
 is a 

sequence of foreign words. Usually exponential!

● A derivation y = p
1
 … p

L
 is valid if:

– Each phrase p
i
 is a member of P  

– Each word in f is translated only once

– For all k ∈ {1,..., L–1}, |t(p
k
) + 1 – s(p

k+1
) | ≤ d where d is a 

parameter of the model called the “distortion limit”. 

Example:
● d = 4, (1, 2, we must) & (3, 3, also) → |2 + 1 – 3| = 0 < d
● d = 4, (1, 1, we) & (7, 7, take) → |1 + 1 – 7| = 5 > d 

wir müssen auch diese kritik ernst nehmen
  1        2            3   4 5        6            7
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Phrase-Based Models: Definitions
● The set of all valid derivations Y (f) where f = f

1
 … f

n
 is a 

sequence of foreign words. Usually exponential!

● A derivation y = p
1
 … p

L
 is valid if:

– Each phrase p
i
 is a member of P  

– Each word in f is translated only once

– For all k ∈ {1,..., L–1}, |t(p
k
) + 1 – s(p

k+1
) | ≤ d where d is a 

parameter of the model called the “distortion limit”. 
● Improves the speed of the decoding step by limiting the number 

of possible translations to search
● Also improves the quality of the translation

– We must also have |1 – s(p
1
) | ≤ d
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Phrase-Based Models: Definitions

● A derivation y = p
1
 … p

L
 is valid if:

– Each phrase p
i
 is a member of P  

– Each word in f is translated only once

– For all k ∈ {1,...,L-1}, |t(p
k
) + 1 - s(p

k+1
) | ≤ d 

– We must also have |1 - s(p
1
) | ≤ d







d = 4

wir müssen auch diese kritik ernst nehmen
  1        2            3   4 5        6            7

“wir müssen” translated twice!

(7, 7, take) & (3, 3, also) → |7 + 1 – 3| = 5 > d
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Phrase-Based Models: Definitions

● The translation problem: find the valid derivation with 
maximum score

● We need to search the exponential set Y (f)

● The score for a derivation y = p
1
 … p

L
 is defined as

Trigram Language
Model for English

sentence

Phrase model
One term per phrase

Distortion model
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Example
wir müssen auch diese kritik ernst nehmen
  1        2            3   4 5        6            7

Score = log q(we | **) + log q(must|* we) + log q(also|we must) + 
              log q(take|must also) + log q(this|also take) + q(criticism|take this) +
              log q(seriously|this criticism) +

              g(1, 3, we must also) + g(7, 7, take) + g(4, 5, this criticism) + 
              g(6, 6, seriously) +

              η |1 – 1| + η |3+1 – 7| + η |7+1 – 4| + η |5+1 - 6|
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Decoding Algorithm
● We need to search an exponential space of possible 

sequences of phrases (valid derivations)
● Will treat the problem as a graph search, to find a path 

from the starting state to the goal state with 
(approximately) maximum score using beam search

● From every state in the graph, explore neighboring 
reachable states (valid moves), keeping only the top 
scoring ones

● End when finished translating the whole
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Decoding Algorithm: Definitions
● A state is a tuple (e

1
, e

2
, b, r, α) where

– e
1
, e

2
 are English words

– b is a bit string of length n  specifying which foreign words 
have been translated

– r  is an integer specifying the end-point of the last phrase
– α is the score of the state (the sequence of phrases) 

● The initial state is q
0
(*, *, 0n, 0, 0)

● The final state is q
f 
(e

i-1
, e

i
, 1n, i, α*)
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Example
wir müssen auch diese kritik ernst nehmen
  1        2            3   4 5        6            7

(*,*,0000000, 0, 0)

(we,must,1100000,2,-1.5)

(must,also,1110000,3,-1.8)

(1,2,we must)

(1,3,we must also)

(3,3,also)
(*,also,0010000,3,-2.5)

… 

(3,3,also)

(must,also,1110000,3,-2.3)

(criticism,seriously,1111111,7,-5.3)
one final state
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Decoding Algorithm: Definitions
● We define a function ph(q) for any state q=(e

1
, e

2
, b, r, α) that 

returns the set of phrases that are allowed to follow state q 
● For a phrase p=(s, t, e) to be in ph(q), it must satisfy:

– p must not overlap with the bit string b of q  i.e. 
b

i
 = 0 for i ∈{s, … , t}

– The distortion limit must not be violated i.e. |r+1–s|≤ d

For example:

– ph(q
0
) = {(1,1,we), (1,2,we must), (3,3,also), ….}

– (7,7,take) ∉ ph(q
0
)

wir müssen auch diese kritik ernst nehmen
  1        2            3   4 5        6            7
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Decoding Algorithm: Definitions
● We define a function next(q, p) for any state q=(e

1
, e

2
, b, r, α) and 

phrase p=(s, t, ϵ
1
 … ϵ

M
) to be the state that results from combining 

state q with phrase p 

● Formally, next(q, p) is the state q'=(e
1
', e

2
', b', r', α') such that:

– e
1
' = ϵ

M-1
 and e

2
' = ϵ

M

– b
i
'=1 for i ∈ {s ... t} & b

i
'=0 for i ∉ {s ... t}

– r' = t

–

Example:

next((must,also,1110000,3,-2.5), (7,7,take)) =

(also,take,1110001,7,-3.2) 
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Decoding Algorithm: Definitions
● We define the equality function eq(q, q') for any two states

 q=(e
1
, e

2
, b, r, α) and q'=(e

1
', e

2
', b', r', α')

● It returns TRUE if 

– e
1
=e

1
'

– e
2
=e

2
'

– b=b'

– r=r'
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Decoding Algorithm
● Inputs: sentence f

1
, …, f

n
 and Phrase-Based Model

● Initialization: Q
0
={q

0
} and Q

i
=Φ for i=1 ... n

● For i = 0 … n–1

– For each state q in beam(Q
i
), for each phrase p in ph(q)

● q' = next(q, p)

● Add(Q
j
, q', q, p) where j = len(q') i.e. number of 1's in b'

● Return: highest scoring state in Q
n
. Back pointers will be used 

to construct the translation and the phrases chosen.

 Breadth-First search (with a catch)
 Each queue Q

i
  holds states that have exactly i foreign words translated 
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Add(Q, q', q, p)
● If there is some q'' in Q such that eq(q'',q')

– If α(q') > α(q'') 
● α(q'') = α(q')
● Set bp(q') = (q, p)   

– Else return 

● Else
– Insert(Q, q') 

● Set bp(q') = (q, p)   

 If the state exists, then do nothing or update its score if higher
 If the state is new, then add it to the queue



Mohamed Aly – CMP462 Spring 2014 Computer Engineering, Cairo University 51/58

beam(Q)
● Define α* = argmax

q∈Q
 α(q) 

● Define β ≥ 0 to be the beam-width parameter

● beam(Q) = {q∈Q: α(q) ≥  α* - β}
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Summary
● Start with IBM Model 2 to learn alignments
● From alignments learn phrase-based lexicon
● Given a foreign sentence, perform a beam search to 

find the highest approximate translation
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MT Evaluation
● How do we evaluate machine translation?

– Human Evaluation
– Automatic Evaluation

● BLEU (Bi-Lingual Evaluation Understudy)
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BLEU
● A number between 0 and 1
● Evaluates the quality of translation of a whole corpus (test set)
● Measures quality by comparing to a set of reference human 

translations
● It is a modified measure of precision i.e. how many of the 

output n-grams in the machine translated output are in the 
reference translations

● It computes scores for uni-grams, bi-grams, tri-grams, and 
usually quadri-grams, and takes their geometric mean

● It also includes a brevity penalty to penalize shorter 
translations since they usually get higher precision
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BLEU Calculation

Unigram Precision = 7 / 7 = 1 !!

● Candidate: the the the the the the the
● Reference 1: the cat is on the mat
● Reference 2: there is a cat on the mat

● Modify the precision by setting a maximum count for each token.
● The maximum count is the maximum number of times this token 

appeared in the reference translations.

Modified Unigram Precision = min(2, 7) / 7 = 2/7

● Candidate: the the the the the the the
● Reference 1: the cat is on the mat
● Reference 2: there is a cat on the mat

Count(the) = 2

Count(the) = 1

Count(the) = 7
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BLEU Calculation
● Candidate 1: It is a guide to action which ensures that the military always obeys 

the commands of the party
● Candidate 2: It is to insure the troops forever hearing the activity guidebook that 

party direct

● Reference 1: It is a guide to action that ensures that the military will forever heed 
Party commands

● Reference 2: It is the guiding principle which guarantees the military forces always 
being under the command of the Party

● Reference 3: It is the practical guide for the army always to heed the directions of 
the party

p2(Candidate 1)=
10
17

p2(Candidate 2)=
1
13

Correct bi-grams in candidate translations

Number of bi-grams in candidate translations
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BLEU Calculation

pn=
∑c∈Candidate ∑n−gram∈c

min (Count (n−gram) , MaxCount(n−gram))

∑c '∈Candidate ∑n−gram∈c '
Count (n−gram)

Modified Precision for n-gram

BLEU=BP×exp( 1
N ∑n=1

N
log pn)

BLEU

Brevity Penalty
Geometric Mean of first N n-grams

BP={ 1 if c>r
e(1−r /c ) if c⩽r

r: length of reference
c: length of candidate
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Recap
● Phrases from Alignments
● Phrase-Based Models
● Decoding in Phrase-Based Models
● Evaluation
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