
CMPN205 Computer Graphics Computer Engineering

Spring 2013 Cairo University

Homework #8

Ray Casting II

In this assignment, you will add new primitives (planes and triangles) and affine transformations. You
will also implement a perspective camera, and two simple shading modes: normal visualization and
diffuse shading. For the normal visualization, you will simply display the absolute value of the
coordinates of the normal vector as an (r, g, b) color. For example, a normal pointing in the positive or
negative z direction will be displayed as pure blue (0, 0, 1). You should use black as the color for the
background (undefined normal).

You will also implement diffuse shading. Given the direction to the light L and the normal N we can
compute the diffuse shading as a clamped dot product:

If the visible object has color cobject=(r , g , b) , and the light source has color clight=(Lr , Lg , Lb) ,
then the pixel color is c pixel=(rdL r , gdLg ,bdLb) . Multiple light sources are handled by simply
summing their contributions. We can also include an ambient light with color cambient, which can be

very helpful in debugging. Without it, parts facing away from the light source appear completely black.
Putting this all together, the formula is:

The object color cobject here acts as the diffuse and ambient coefficients from the lectures and earlier
homeworks. Color vectors are multiplied term by term. Note that if the ambient light color is (1,1,1)
and the light source color is (0,0,0) , then you have the constant shading used in the previous
homework, where the ambient color is applied to every pixel.

Mohamed Aly HW #8 1/8

d ={L⋅N if L⋅N >0
0 otherwise

c pixel=cambient *cobject+∑i
max (Li⋅N , 0)* clight *cobject

Tasks

• Update the Hit data structure to store normals. Update your sphere intersection routine to pass
the normal to the hit.

• Add simple normal and di use ff shading. At this point, they can be implemented in the main
loop. Di use shading should include an ambient term (no specular yet!).ff

• Add a perspective camera class, and implement its ray-generation method.
• Implement an infinite plane primitive. It should be a subclass of Object3D and implement the

intersect method, including normal computation.
• Implement a triangle primitive and the corresponding ray-triangle intersection.
• Derive a subclass Transformation from Object3D. This class stores a 4x4 matrix and a pointer

to an Object3D that undergoes the transformation.
• Implement the ray and normal transformation for proper intersection.

Classes you need to write/update

• The Hit class has been modified to store the normal of the intersection point. Update your
sphere intersection routine to pass the normal to the Hit.

• Implement the new rendering mode, normal visualization. Add code to parse an additional
command line option -normals <normal_file.tga> to specify the output file for this
visualization (see examples below).

• Add diffuse shading. We provide the pure virtual Light class and a simple directional light
source. Scene lighting can be accessed with the SceneParser::getLight() and
SceneParser::getAmbientLight() methods. Use the Light class method:

 void getIllumination(const Vec3f &p, Vec3f &dir, Vec3f &col);

to find the illumination at a particular location in space. p is the intersection point that you
want to shade, and the function returns the normalized direction toward the light source
in dir and the light color and intensity in col.

• Add a PerspectiveCamera class that derives from Camera. Choose your favorite internal

Mohamed Aly HW #8 2/8

camera representation. Similar to an orthographic camera, the scene parser provides you with
the camera center, main direction (looking into the scene), and up vectors. But for a perspective
camera, the field of view is specified with an angle (as shown in the diagram).
 PerspectiveCamera(Vec3f ¢er, Vec3f &direction, Vec3f &up, float angle);
You should compute the extent of the field of view (i.e. left, right, top, bottom) of the viewing
space from the angle using simple trigonometry. In particular, assuming the viewing plane is at
distance 1 from the camera, then the length of the side of the viewing rectangle (square in that
case) is s=tan θ

2
where θ is the field of view. In that case, the extent of the viewing space

is t=r=s and l=b=−s .
• Implement Plane, an infinite plane primitive derived from Object3D. Use the representation

of your choice, but the constructor is assumed to be:

 Plane(Vec3f &normal, float d, Material *m);

d is the offset from the origin, meaning that the plane equation is p⋅n = d. You can also
implement other constructors (e.g. using 3 points). Implement intersect, and remember that
you also need to update the normal stored by Hit, in addition to the intersection distance t and
color.

• Implement a triangle primitive which also derives from Object3D. The constructor takes 3
vertices:

 Triangle(Vec3f &a, Vec3f &b, Vec3f &c, Material *m);

Implement the intersection using the method explained in the lectures. We can compute the
normal by taking the cross-product of two edges, but note that the normal direction for a
triangle is ambiguous. We'll use the usual convention that counter-clockwise vertex ordering
indicates the outward-facing side. If your renderings look incorrect, just flip the cross-product
to match the convention.

• Derive a subclass Transform from Object3D. Similar to a Group, a Transform will
store a pointer to an Object3D (but only one, not an array). The constructor of a
Transform takes a 4x4 matrix as input and a pointer to the Object3D modified by the
transformation:

 Transform(Matrix &m, Object3D *o);

The intersect routine will first transform the ray, then delegate to the intersect routine
of the contained object. Make sure to correctly transform the resulting normal according to the
rule seen in lectures. You may choose to normalize the direction of the transformed ray or leave
it un-normalized. If you decide not to normalize the direction, you might need to update some
of your intersection code. Make sure to transform the ray direction without the translation part
(this is automatically the case if you represent direction vectors with 0 in their fourth
coordinate).

Mohamed Aly HW #8 3/8

Utilities Provided

Parsing command line arguments & input files
The scene parser has been updated to include the extra information in the scene
files e.g. lights and diffuse materials.

Other
You will need to update the Makefile to include the other classes you are writing.

Hints

• Parse the arguments of the program in a separate function. It will make your code easier to read.
• Implement the normal visualization and diffuse shading before the transformations.
• Use the various rendering modes (normal, diffuse, distance) to debug your code.

Sample Results
raycast -input scene2_01_diffuse.txt -size 200 200 -output output2_01.tga
raycast -input scene2_02_ambient.txt -size 200 200 -output output2_02.tga

raycast -input scene2_03_colored_lights.txt -size 200 200 -output output2_03.tga
-normals normals2_03.tga

Mohamed Aly HW #8 4/8

raycast -input scene2_04_perspective.txt -size 200 200 -output output2_04.tga
-normals normals2_04.tga

raycast -input scene2_05_inside_sphere.txt -size 200 200 -output output2_05.tga
-depth 9 11 depth2_05.tga -normals normals2_05.tga -shade_back

raycast -input scene2_05_inside_sphere.txt -size 200 200 -output
output2_05_no_back.tga

raycast -input scene2_06_plane.txt -size 200 200 -output output2_06.tga -depth 8
20 depth2_06.tga -normals normals2_06.tga

Mohamed Aly HW #8 5/8

raycast -input scene2_07_sphere_triangles.txt -size 200 200 -output
output2_07.tga -depth 9 11 depth2_07.tga -normals normals2_07.tga -shade_back

raycast -input scene2_07_sphere_triangles.txt -size 200 200 -output
output2_07_no_back.tga

raycast -input scene2_08_cube.txt -size 200 200 -output output2_08.tga
raycast -input scene2_09_bunny_200.txt -size 200 200 -output output2_09.tga
raycast -input scene2_10_bunny_1k.txt -size 200 200 -output output2_10.tga

raycast -input scene2_11_squashed_sphere.txt -size 200 200 -output output2_11.tga
-normals normals2_11.tga

Mohamed Aly HW #8 6/8

raycast -input scene2_12_rotated_sphere.txt -size 200 200 -output output2_12.tga
-normals normals2_12.tga

raycast -input scene2_13_rotated_squashed_sphere.txt -size 200 200 -output
output2_13.tga -normals normals2_13.tga

raycast -input scene2_14_axes_cube.txt -size 200 200 -output output2_14.tga
raycast -input scene2_15_crazy_transforms.txt -size 200 200 -output

output2_15.tga

Mohamed Aly HW #8 7/8

raycast -input scene2_16_t_scale.txt -size 200 200 -output output2_16.tga -depth
2 7 depth2_16.tga

Acknowledgment

This homework is adapted from class 6.837 at MIT.

Mohamed Aly HW #8 8/8

	Homework #8
	Ray Casting II
	Tasks
	Classes you need to write/update
	Utilities Provided
	Hints
	Sample Results

