
CMP205: Computer Graphics

Lecture 14: Curves and Surfaces

Mohamed Alaa El-Dien Aly
Computer Engineering Department

Cairo University
Fall 2012



Mohamed Aly – CMP205 Fall 2012 Computer Engineering, Cairo University 2/54

Agenda
● Splines

– Linear Splines

– Hermite Splines

– Bézier Splines

● Surfaces

Acknowledgment: Some slides adapted from Steve Marschner, Maneesh Agrawala, and Fredo Durand
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Splines
● In many applications need to draw smooth 

curves
● So far

– triangles, squares, …

– circles, ellipses, ...
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Splines

Metal Spline and Ducks used by draftsmen
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Splines
● Smooth curves
● Many applications

– 2D modeling (Inkscape, Illustrator)

– Fonts

– 3D modeling

– Animation

● Generally
– Interpolation

– Approximation
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Splines
● Smoothness

– Metal spline: metal curve minimization

– Graphics: smooth functions (low order polynomial)

● Control
– Metal spline: ducks

– Graphics: control points
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Splines

How many dimensions? 1D curve in 2D space
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Splines

How many dimensions? 1D curve in 3D space
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Splines

S={p(t) | t∈[0, N ]}Parametric Curve

Piecewise polynomial: different polynomial in each interval [i, i+1]

p(t)=[ x (t )
y (t )]



Mohamed Aly – CMP205 Fall 2012 Computer Engineering, Cairo University 10/54

Splines

S={p(t) | t∈[0, N ]}Parametric Curve

Piecewise polynomial: different polynomial in each interval [i, i+1]

Interval: t∈[0,2 ]

p(t)=[ x (t )
y (t )]
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Splines
● Generally f(t) is piecewise polynomial

– For example, cubic spline has cubic polynomials

– Coefficients different for every type of spline

x (t )=a x t3
+bx t2

+c x t+d x

y(t)=a y t 3
+b y t2

+c y t+d y
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Coordinate Functions

p(t)=[ x (t )
y (t )]
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Coordinate Functions

p(t)=[ x (t )
y (t )]
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Coordinate Functions

p(t)=[ x (t )
y (t )]
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Coordinate Functions

p(t)=[ x (t )
y (t )]
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Coordinate Functions

p(t)=[ x (t )
y (t )]
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Coordinate Functions

p(t)=[ x (t )
y (t )]
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Splines

Control Points: Control the shape of the spline
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Splines

Interpolating spline: passes through the control points
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Splines

Approximating Spline: just guided by the control points
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Splines

Mixture: goes through some and approximates some
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Splines
● Each coordinate function is treated separately

● Two Formulations:
– Polynomial in t (Polynomial Formulation)

– Linear combinations of the control points (Basis 
Function Formulation)

p(t)=[ x (t) y(t)]

p(t)=∑i
bi(t ) p i

p(t)=∑i
t i a i
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Linear Splines

Represent each interval as a straight line

p
0

p
1 p

2

p
3

p
4

x (t )=x0+( x1−x0)t
y(t)= y0+( y1− y0)t
p(t)= p0+( p1− p0) t
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Linear Splines

Constraints:

p
0

p
1 p

2

p
3

p
4

p(0)= p0=a0
p(1)= p1=a0+a1

p(t)=a0+t a1

[ p0
p1]=[0 1

1 1][a1
a0]

p=C aConstraint Matrix:

Matrix Form:

Solve for a: a=B p

Basis Matrix: B=C−1

B=[−1 1
1 0]

Polynomial Formulation:
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Linear Splines

p
0

p
1 p

2

p
3

p
4

p(t)=a0+t a1

a0= p0
a1= p1− p0

[a1
a0]=[−1 1

1 0][ p0
p1]

Polynomial Formulation:

a=B p
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Linear Splines
Matrix Form

p(t)=[ t 1 ][−1 1
1 0][ p0

p1]
p(t)=t B p

t=[ t 1] B=[−1 1
1 0] p=[ p0

p1]

p(t)=a0+t a1

p(t)=[t 1][a1
a0]

[a1
a0]=[−1 1

1 0][ p0
p1]
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Linear Splines

p
0

p
1 p

2

p
3

p
4

Matrix Form

p(t)=[ t 1 ]([−1 1
1 0][ p0

p1])

p(t)=a0+t a1

p(t)= p0+t ( p1− p0)

p(t)=t ( B p)

t=[ t 1 ] B=[−1 1
1 0] p=[ p0

p1]

Polynomial Formulation:
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Linear Splines
Basis Function Formulation

p
0

p
1 p

2

p
3

p
4

Matrix Form

p(t)=([t 1 ][−1 1
1 0])[ p0

p1]

p(t)=( p1− p0) t+ p0

=(1−t) p0+t p1

p(t)=∑i
bi(t ) p i

p(t)=( t B ) p

b(t )=[b0(t)
b1(t)]=[1−t

t ]
b(t )=t BBasis Functions:
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Linear Splines

Blending (Basis) Functions: Contribution of each point as t changes

p(t)=(1−t) p0+t p1=b0(t ) p0+b1(t) p1
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Hermite Splines
● Piecewise cubic polynomials
● Constraints:

– two end points 

– two tangents (derivatives)

p(t)=a3 t
3
+a2 t

2
+a1 t+a0
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Hermite Splines
p(t)=a3 t

3
+a2 t

2
+a1 t+a0

p(0)= p0=a0
p(1)= p1=a3+a2+a1+a0
p ' (0)=v0=a1
p ' (1)=v1=3 a3+2 a2+a1

Constraints

[
p0
p1
v0
v1
]=[

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

][
a3
a2
a1
a0
]

p ' (t)=3 a3 t
2
+2 a2 t+a1

Solve for a = (a
3
, a

2
, a

1
, a

0
)

C=[
0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

]
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Hermite Splines

[
a3
a2
a1
a0
]=[

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

][
p0
p1
v0
v1
]

a=C−1 p=B p

a3=2 p0−2 p1+v0+v1
a2=−3 p0+3 p1−2v0−v1
a1=v0
a0= p0

[
p0
p1
v0
v1
]=[

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

][
a3
a2
a1
a0
]



Mohamed Aly – CMP205 Fall 2012 Computer Engineering, Cairo University 33/54

Hermite Splines

p(t)=[ t3 t2 t 1][
2 −2 1 1

−3 3 −2 −1
0 0 1 0
1 0 0 0

][
p0
p1
v0
v1
]

p(t)=t a=t B p

[
a3
a2
a1
a0
]=[

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

][
p0
p1
v0
v1
]
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Hermite Splines
Basis Function Formulation p(t)=∑i

bi(t ) p i

b(t )=t B

p(t)=[ t3 t 2 t 1][
2 −2 1 1

−3 3 −2 −1
0 0 1 0
1 0 0 0

][
p0
p1
v0
v1
]

b0(t )=2 t3
−3 t 2

+1

b1(t)=−2t3
+3t2

b2(t)=t3−2t2+t

b3(t)=t 3
−t 2

Hermite Polynomials
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Hermite Splines
Basis Function Formulation p(t)=∑i

bi(t ) p i

Blending Functions
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Hermite Splines
● Longer splines

– Split into pieces

– Join pieces such that tangents match
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Bézier Splines

Represent tangents as difference between points
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Bézier Splines
p(t)=a3 t

3
+a2 t

2
+a1 t+a0

p(0)= p0=a0
p(1)= p3=a3+a2+a1+a0
p ' (0)=3( p1− p0)=a1
p ' (1)=3( p3− p2)=3 a3+2 a2+a1

Constraints

[
a3
a2
a1
a0
]=[

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

][
p0
p1
p2
p3
]

p ' (t)=3 a3 t
2
+2 a2 t+a1

Can also derive from Hermite Splines. How?
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Bézier Splines

p(t)=[t3 t 2 t 1 ][
−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

][
p0
p1
p2
p3
]

p(t)=a3 t
3
+a2 t

2
+a1 t+a0

[
a3
a2
a1
a0
]=[

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

][
p0
p1
p2
p3
]
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Bézier Splines

p(t)=([t3 t 2 t 1 ][
−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

])[
p0
p1
p2
p3
]

Basis Functions

b(t)=[
−t 3+3 t2−3t+1
3t3

−6t2
+3t

−3t3+3t2

t3 ]=[
(1−t)3

3(1−t)2 t
3(1−t) t2

t 3 ]
Bernstein Polynomials

p(t)=b0(t) p0+b1(t ) p1+b2(t) p2+b3(t ) p3
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Bézier Splines

Chaining Bézier Splines: Collinear control points



Mohamed Aly – CMP205 Fall 2012 Computer Engineering, Cairo University 42/54

Splines
● Other types:

– Catmull-Rom

– B-splines

– Non-Uniform B-splines

– Non-Uniform Rational B-splines (NURBs)
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Spline Drawing

p(t)=t B p

Need to rasterize the the spline to display it
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Spline Drawing
● Recursive Subdivision: De Casteljau's Algorithm

● Termination
– Distance between control points and line

– Distance between control points
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Spline Drawing
● Uniform Spacing

– Subdivide the range of t using a fixed step Δt

– Incrementally compute points p(t + Δt) from p(t)

p(0)

p(Δ t )

p(2Δ t )

p(3Δ t)

p(t+Δ t)= p(t)+Δ p( p(t))
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Surfaces

Surfaces used for modeling
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Surfaces

How many dimensions? 2D curve in 3D space
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Surfaces
● Representing surfaces

– Extrusions

– Surfaces of Revolution

– Swept Surfaces

– Spline Patches

– Subdivision Surface
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Extrusions

Spline curve: P (u) Surface: P (u , v)

Slide the curve P(u) along axis

Cylinder



Mohamed Aly – CMP205 Fall 2012 Computer Engineering, Cairo University 50/54

Surfaces of Revolution
Spline curve: P (u)

Surface: P (u , v)

Revolve the curve P(u) around axis

Torus
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Swept Surfaces

Sweep a cross section along a spine
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Bicubic Bézier Patches

16 control points
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Subdivision Surfaces
● Start with polygonal mesh
● Subdivide into larger number of polygons
● Results in smoother surfaces
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Recap
● Splines

– Linear Splines

– Hermite Splines

– Bézier Splines

● Surfaces
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