
CMPN463 NLP Computer Engineering 

Fall 2013 Cairo University 

Homework #3: Sentiment

Deadline: 11:59pm Sunday 27 October 2013

Please present a report with all your answers, explanations, and sample images or plots. Submit also a
soft copy of the source code and binaries used to generate these results. Please note that copying of
any results or source code will result in ZERO credit for the whole homework.

Acknowledgment: This homework is adapted from Chris Manning and Dan Jurafsky's Coursera NLP 
class from 2012.

Your goal for this homework is to perform Sentiment Analysis: classifying movie reviews as positive
or negative. Recall from the lecture that sentiment analysis can be used to extract people's opinions
about all sorts of things (congressional debates, presidential speeches, reviews, blogs) and at many
levels of granularity (the sentence, the paragraph, the entire document). Our goal in this task is to
look at an entire movie review and classify it as positive or negative.

Algorithm

You will be using Naïve Bayes, following the pseudocode in Manning, Raghavan, and Schütze (page
241 in the paper, offline edition; page 260 in the "pdf for printing" or "pdf for online viewing" version
that's  online), using Laplace (add-1) smoothing. Your classifier will use words as features, add the
logprob scores for each token, and make a binary decision between positive and negative. You will
also explore:

1. The effects of stop-word filtering. This means removing common words like "the", "a" and "it"

from your train and test sets. We have provided a stop list with the starter code in the file:
data/english.stop

2. The  effects  of  Boolean  Naive  Bayes.  This  means  removing  duplicate  words  in  each
document (review) before training.

The algorithm is a simplified version of this paper:

•Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment 
Classification using Machine Learning Techniques. Proceedings of the Conference on Empirical 
Methods in Natural Language Processing (EMNLP), pp. 79-86.

Assignment
Train a  Naïve Bayes  classifier on the  imdb1  data set provided with the starter code. This is the

Mohamed Aly – CMPN463 NLP HW #3 1/3

http://www.coursera.org/
http://www.cs.cornell.edu/home/llee/papers/sentiment.pdf
http://www.cs.cornell.edu/home/llee/papers/sentiment.pdf
http://nlp.stanford.edu/IR-book/


actual Internet Movie Database review data used in the original Pang and Lee paper. The starter
code comes already set up for 10-fold cross-validation training and testing on this data. Recall that
cross-validation involves dividing the data into several sections (10 in this case), then training and
testing the classifier repeatedly, with a different section as the held-out test set each time. Your final
accuracy is the average of the 10 runs. When using a movie review for training, you use the fact that
it is positive or negative (the hand-labeled "true class") to help compute the correct statistics. But
when the same review is used for testing, you only use this label to compute your accuracy. The data
comes with the cross-validation sections; they are defined in the file:

data/poldata.README.2.0

Your first task is to implement the classifier training and testing code and evaluate them using the
cross-validation mechanism. Next, evaluate your model again with the stop words removed. Does
this approach affect average accuracy (for the current given data set)?

Where to Make Your Changes
You need to make your changes in at least three functions:

• addExample(): which adds a new training example.

• classify(): which classifies a test example.

• filterStopWords(): which implements stop-word filtering.

Evaluation
Your classifier will be evaluated imdb1 mentioned above, once with and once without invoking stop-
word filtering.

Running the code

$ cd python

$ python NaiveBayes.py [-f] ../data/imdb1

or press F5 from Python(x,y) (see default parameters in main()). This will train the language models
for  each  cross-validation  and  output  their  performance.  Adding  a  -f  flag  invokes  the  stop-word
filtering.

If you're curious how your classifier performs on separate training and test data sets, you can specify
a second directory, in which case the program should train on the entirety of the first set (i.e., without
cross-validation) then classify the entire held-out second set.

Mohamed Aly – CMPN463 NLP HW #3 2/3



$ python NaiveBayes.py (-f) train test

Requirements

You are required to implement:
1. Naive Bayes classifier, and specifically the functions mentioned above. 
2. Boolean Naive Bayes classifier.
3. Experiment with/without using stop words.

You are required to obtain an average performance of at least 80% for the normal Naive Bayes. Please
include in your report a printout of your runs with/without stop word filtering, and mention if  the
Boolean Naive Bayes improves your performance or not.

Please submit your code and report in one zip file, named CMPN463.HW03.firstname.lastname.zip.
For  example,  if  your  name  is  Mohamed  Aly,  your  file  should  be  named
CMPN463.HW03.Mohamed.Aly.zip.

Grading

4 pts: implementation of Naive Bayes
2 pts: implementation of Boolean Naive Bayes
1 pt: implementation of stop word filtering
2 pts: report and submission file name
1 pts: performance better than 80%.

Mohamed Aly – CMPN463 NLP HW #3 3/3


	Homework #3: Sentiment
	Algorithm
	Assignment
	Where to Make Your Changes
	Evaluation
	Running the code


